Focal Plane Arrays for HAWC+, SOFIA's upgraded High-resolution Airborne Wideband Camera and polarimeter

Dominic J. Benford^{1,*}, Christine Jhabvala¹, Tim Miller¹, Johannes Staguhn^{1,2}, Elmer Sharp^{1,3}, Ed Wollack¹, Dale Fixsen^{1,4}, Leroy Sparr¹, C. Darren Dowell⁵, Marcus Runyan⁵

¹NASA / Goddard Space Flight Center, Greenbelt, MD 20771, USA
²Johns Hopkins University, Balitmore, MD USA
³GS&T, Greenbelt, MD USA
⁴Univesity of Maryland – College Park, College Park, MD USA
⁵Jet Propulsion Laboratory, Pasadena, CA USA
*Contact: Dominic.Benford@nasa.gov, phone +1-301-286-8771

Abstract— SOFIA's High-resolution Airborne Wideband Camera is being upgraded (HAWC+) to increase its mapping speed by an order of magnitude, add new filters, and enable polarimetry. The mapping speed is improved primarily by increasing the number of pixels from 384 to 2,560. Sensitive polarimetry is enabled by using two focal plane arrays, one per polarization, in a differential mode. These two focal plane arrays must be able to operate across wavelength bands from 50 to 250 microns, and accommodate optical power varying over more than two orders of magnitude. In each focal plane array package, two individual 32x40 arrays of superconducting transition edge sensor bolometers are bump bonded to a SQUID multiplexer readout. The packages are compact, robust, light-tight, magnetically shielded, and connectorized for modularity. We present key aspects of the design and early measurements.