Ultra-low Noise TES bolometer Arrays for SAFARI Instrument on SPICA

P. Khosropanah^{1*}, T. Suzuki², R.A. Hijmering¹, M.L. Ridder¹, J.-R.Gao^{1,3}, H. Akamatsu¹, L. Gottardi¹, J. van der Kuur¹, B.D. Jackson¹

¹SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584CA Utrecht, The Netherlands ²Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan

³Kavli Institute of NanoScience, Delft University of Technology, Delft, the Netherlands * Contact: <u>P.Khosropanah@sron.nl</u>

SPICA (SPace Infrared telescope for Cosmology and Astrophysics) is a future space mission for mid- and far-infrared (IR) astronomy. By having a large (2.5 m) and cooled (< 8 K) telescope combined with ultra sensitive IR detectors, SPICA provides an opportunity to make natural background-limited observations over the wavelength range from 17 to 230 µm. One of the instruments aboard SPICA is SAFARI (SpicA FARinfrared Instrument), which is a grating spectrometer covering the full 34-230 µm wavelength range. SAFARI detectors are transition edge sensor (TES) bolometers for three wavelength bands: S-band for 34-60 µm, Mband for 60-110 µm, and L-band for 110-230 µm. Each band requires a large number of pixels (~ 600-2000 pixels) and an extremely high sensitivity (electrical Noise Equivalent Power, NEPel ~ 2×10^{-19} W/ \sqrt{Hz} at frequencies below ~ 100 Hz). SRON is developing ultra-low noise TESs based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs. The pixel size is ~ $800 \times 800 \ \mu m^2$. Three types of TESs were fabricated on SiN islands with different sizes and with and without optical absorbers. These TESs have thin (0.20 μ m), narrow (0.5-0.7 μ m), and long (340-460 μ m) SiN legs, and show Tc of ~ 93 mK and Rn of ~ 158 mΩ. They were characterized under AC bias using a Frequency Division Multiplexing readout (1-3 MHz) system. without absorber show The TESs NEPs as low 1.1×10^{-19} W/ \sqrt{Hz} with response time of below 1 ms,. For the TESs with absorber, we confirmed a higher NEPel

(~ 5×10^{-19} W/ $\sqrt{\text{Hz}}$) than that of TESs without the absorber, due to the stray light.