As grown ultra-thin MgB₂ films for superconducting detectors

Evgenii Novoselov* and Sergey Cherednichenko

Chalmers University of Technology, SE-41296, Gothenburg, Sweden *Contact: evgenii@chalmers.se

Abstract—For both hot-electron bolometers (HEBs) and superconducting single-photon detectors (SNSPDs) high quality thin superconducting films are of crucial importance. Using MgB₂ with a critical temperature (T_c) of 39K (vs 15-16K for NbN) much higher operation temperatures (15-30K) could be achieved. In this case compact cryocoolers could be used, hence extending missions life time significantly. Furthermore, utilization of MgB₂ for HEB mixer improves gain and noise bandwidths due to shorter electron-phonon interaction time and better acoustic matching to the substrate. Unfortunately, reduction of film thickness is usually followed by reduction of T_c (in 3-5nm NbN films T_c is 9-11K), while for HEBs and SNSPDs a combination of both a small thickness and a high T_c is desirable. Low film roughness and high homogeneity are other importance merits. A hybrid physical chemical vapour deposition (HPCVD) method has been reported to be much more efficient for high quality thin MgB₂ film depositions compared to e.g. molecular beam epitaxy (MBE), co-evaporation etc. It has been shown before than a gain bandwidth (GBW) of 6GHz can be achieved for HEBs made from 15-20nm MgB₂ films. Our goal is to develop a deposition method providing MgB₂ films thinner than 10nm and with a $T_c > 30K$ in order to extend GBW to >10GHz.

Here we present our recent results on ultra-thin MgB₂ film deposition using our (in-house built) HPCVD system. To study film properties on submicron level films were patterned in bridges with dimensions varying from $0.3 \times 0.3 \mu m^2$ to $1 \times 1 \mu m^2$. 20nm thick films had a room temperature resistivity ρ_{295K} of $50\mu\Omega \cdot cm$ ($13\mu\Omega \cdot cm$ for un-patterned films) with a T_c of 39K and a critical current density J_c (4.2K) up to $1.2 \times 10^8 A/cm^2$. A deposition rate of 0.8 A/s is much lower compared to previously reported values (vs 3 A/s). We obtained MgB₂ films as thin as 5-7nm with a T_c of 31-34K, a ρ_{295K} (in sub-micron scale bridges) of $\sim 100\mu\Omega \cdot cm$, and a J_c of (1- $3) \times 10^7 A/cm^2$. Using such films antenna integrated HEB mixers ($1 \times 1 \mu m^2$) have been fabricated which showed both a low noise and a noise bandwidth > 10GHz (see also "MgB₂ HEB mixer with an 11GHz bandwidth" on this conference).