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Abstract— As high pixel count Microwave Kinetic Inductance 
Detector (MKID) arrays become widely adopted, there is a 
growing demand for automated device readout calibration. These 
calibrations include ascertaining the optimal driving power for 
best pixel sensitivity, which, because of large variations in MKID 
behavior, is typically performed by manual inspection. This 
process takes roughly 1 hour per 1000 MKIDs, making the 
manual characterization of ten-kilopixel scale arrays unfeasible. 
We propose the concept of using a machine-learning algorithm, 
based on a convolution neural network (CNN) architecture, which 
should reliably tune ten-kilopixel scale MKID arrays on the order 
of several minutes. 

INTRODUCTION 
Microwave Kinetic Inductance Detectors, or MKIDs, are 

superconducting detectors that sense photons by measuring the 
change in ac surface impedance produced by the separation of 
Cooper pairs [1]. Each MKID device is a superconducting thin 
film lithographically patterned into an array of high quality 
factor microwave resonators. Through passive frequency 
domain multiplexing, arbitrarily large arrays can be fabricated 
and thousands of pixels can be read out per feed-line using 
room temperature electronics. The current generation of MKID 
devices are kilopixel arrays [2] and in the UVOIR (UV, optical 
and IR) regime, the current generation are many tens of 
thousands of pixels [3].  

While fabrication of large arrays is comparatively 
straightforward, maintaining consistency across each array is 
challenging. Ideally a wide frequency sweep through the device 
should yield transmission dips at equal spacing with uniform, 
high quality factors. In reality there is a distribution in the 
separation between resonances and the quality factors, and 
therefore the power handling ability. Due to this variety in 
behavior, the probe signal power allocations have been, until 
now, mostly decided by manual human inspection. 

MKID DIGITAL READOUT 
For readouts in both the THz [4] and UVOIR regime [5], a 

software defined radio transceiver is used to generate and 
monitor a comb of microwave frequencies to drive each of the 
resonators. Since the quality factors of the resonators are high, 

 
Fig. 1: A block diagram showing the general functions of the hardware that 
make up a single feed-line of the second generation UVOIR Software Defined 
Radio digital readout [5]. The CASPER ROACH2 boards [6] contain firmware, 
that produces the baseband frequencies to drive the resonators; as well as 
channelizes the incoming signal, performs optimal filtering, triggering, and 
creates photon packets to send to the data acquisition machine.  

 
the carrier frequency for a particular pixel does not interact 
with other pixels while propagating through the array. The 
complexity of device readout is transferred to the digital 
backend, which demultiplexes the sum of probe tones using 
custom firmware. The number of resonators a feed-line can 
probe is limited by bandwidth of the analogue-to-digital 
converter (ADC); therefore, many feed-line readout systems 
operate in parallel, each probing a fraction of the array. Fig. 1 
shows the readout architecture of a single feed-line for the 
UVOIR second-generation readout [5].  

In order to detect the phase (or amplitude) modulations of 
each resonator during observations, the readout uses I/Q carrier 
signals, where I and Q represent the magnitude of the real and 
imaginary signal components respectively. I is a sine wave at 
the resonator frequency and Q is the same waveform offset in 
phase by one-quarter cycle. The phase between the readout 
tone and the resonant frequency is calculated using the 
equation Φ = arctan(Q/I). During observations, the readout 
electronics constantly monitor the phase of each pixel and if 
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that phase crosses a threshold then a photon packet is created 
and sent to the data acquisition machine. 

DRIVE SIGNAL POWER TUNING 
Readout tone powers need to be evaluated and programmed 

into the readout in order to probe the resonators under optical 
illumination. The cryogenic amplifier (usually a HEMT 
amplifier) noise and Two-Level System Noise [7] place limits 
on the sensitivity of the device. One technique to reduce these 
contributions is to drive each resonator with as much power as 
possible. However, in the high-power regime resonators exhibit 
a nonlinear response. If the power is sufficiently high, the 
resonator can occupy two stable states, and the resonator 
undergoes bifurcation. This has been attributed to an inherent 
nonlinearity in the kinetic inductance [8] and readout power 
heating [9]. The transmission profile distorts away from the 
Lorentzian profile (Fig. 2), which can be detrimental to the 
phase measurements and therefore sensitivity. The goal in 
readout tuning is therefore to identify the power for the onset of 
bifurcation and step down a few dB – which is essentially a 
classification problem.  

De Visser et al. [10] have shown that, in the THz regime, 
even though the readout photons are below the Cooper pair 
binding energy, the readout photons will heat the quasiparticle 
population, which leads to an increase in generation-
recombination noise. This study assumes that optimum 
sensitivity is achieved by driving the resonators at the highest 
power prior to bifurcation, and describes an optimization to that 
method. In theory, the algorithm could be optimized to any 
criteria so long as the training data exists.  

Presently, the optimal power for each resonator is evaluated 
through manual visual inspection. The user will study each 
resonator, observing the resonance loops, the derivative of the 
transmission spectra with respect to frequency, termed vIQ, and 
the relative change of these parameters at increasing power. 
With this information at hand they can ascertain if, and why, a 
resonator is showing non-ideal behavior, and make an informed 
estimate of the optimal power. 

For the second generation UVOIR readout [5], the input data 
is created by sweeping the digital readout frequency across the 
resonators and then stepping the power of the digital readout in 
1 dB intervals. The power limits are chosen such that each 
resonator is sampled in the low power regime and after it has 
transitioned into the bifurcation regime. This creates a datacube 
for each resonator consisting of I and Q magnitudes at each 
frequency and power. Hierarchical Data Format (HDF5) [11] is 
used to store each of these datacubes for every pixel on a feed-
line.  

Fig. 2 shows two example resonator datacubes. The first 
resonator in Fig. 2 (a) shows a resonator with near-ideal 
transmission spectra and power handling ability. The resonator 
clearly bifurcates at the power proceeding lime-green (power 
index 12 from the lowest power).  

 

 
Fig. 2: (a) The resonance loop and transmission spectrum of an ideal resonator 
sampled at a range of powers. (b) The resonance loop and transmission 
spectrum of two near-colliding resonators sampled at a range of powers. The 
red and blue trends are sampled at the highest and lowest powers respectively; 
high saturation colors are separated by 3dB. The units of I and Q are 
uncalibrated raw data produced by the Analog to Digital converter in the digital 
readout.  
 

The second resonator, Fig. 2b, shows a resonator datacube 
where the sampling window becomes contaminated at high 
powers with an adjacent resonator from higher frequencies and 
the initial resonator simultaneously translates out of the 
sampling window at low frequencies. Depending on the 
sampling window, it will sometimes appear as though an 
unbifurcated resonator disappears and a bifurcated resonator 
reappears, or vice versa. Sometimes, two resonator profiles will 
merge, and it is non-trivial to analytically fit the merger. Other 
times a well-separated resonator will show non-ideal power-
handling behavior, for example the resonator in Fig. 2a shows 
multiple discontinuities at the penultimate power sample. Or 
simply, a resonator could have low signal to noise ratio. 

When preparing an MKID device for observations it is often 
preferable to include as many resonators as possible, to ensure 
sufficient pixel count. However, there are many ways 
resonators can show non-ideal behavior and it is challenging to 
tune analytical algorithms to accurately account for each type 
of behavior.  

DEEP LEARNING CLASSIFICATION 

Deep learning is a machine learning method used to discover 
and model high level abstractions in data [12], and the 
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Fig. 3: The first four layers of a generic convolution neural network. The n and 
k labels for the feature maps are displayed in the reference frame of layer 2. 
For clarity, the n dimension of the weight tensors are not displayed, nor are any 
of the bias vectors. The input image has two spatial dimensions (frequency and 
power) and an effective depth of two (amplitudes of I and Q). The filled 
squares in each layer represent a projection to all depths. For a given weight, 
the filled square of the previous feature map displays the receptive field and, on 
the current feature map, the destination of the weighted sums along the n 
dimension. Between layers 2 & 3 is a 1/4 subsampling or pooling 
 
objective in classification is simply to create some model 
which can take an input vector and assign the correct label to it. 
In deep learning this is accomplished with an interconnected 
network of multiple layers each consisting of many transfer 
functions termed neurons. Each neuron takes the input from the 
previous layer, transforms it according to a learnable parameter 
and then passes the output through a nonlinear activation 
function. During training, these parameters are tuned in 
successive iterations such that the outputs of the final layer 
converge on the labels of the input images for that batch. For 
resonator power tuning, the target label would be the optimal 
power index, or in this study, the highest power prior to 
bifurcation.  

The more layers in the neural network, the more complex the 
features the model can discern. However, a excessive number 
of parameters in the neural network compared to the amount of 
training data, increases the chances of overfitting, meaning the 
model does not generalize well to unseen input data. Image 
recognition algorithms typically use millions of training 
images. For resonator power tuning, using manual inspection 
data as the reference training set, this magnitude of training 
data will not be available. To maintain the model sophistication 
in this instance, more training data could be created through 
label preserving transformations, or regularization techniques 
such as dropout [13], early stopping and batch normalization 
[14] could be utilized. 

In a fully connected neural network (FCNN), each neuron 
computes a weighted sum of all the neurons in the layer that 
precedes it. These networks suffer from the ‘curse of 
dimensionality’, making them computationally expensive and, 
in some cases, easy to overfit. The goal of this study is to create 
a fast and rigorous algorithm. Given the limited scope of the 

training data, an alternative neural network architecture should 
be more effective.  

Convolution neural networks (CNN) conversely are locally 
connected networks. Smaller weight matrices are convolved 
across the preceding layer, probing smaller receptive fields and 
exploiting spatially local correlations. To increase the number 
of free parameters, a four-dimensional weight tensor is 
convolved across the previous layer producing a tensor, x , with 
depth K for an input depth N.  

𝒙!
(!) = 𝑎 𝒘!,!

(!)
!

!
∗ 𝒙!

(!!!) + 𝒃!
(!)  

where 𝑛 = 0,1…𝑁 and 𝑘 = 0,1…𝐾. The weights, 𝒘(!), act as 
filters extracting two-dimensional features from each layer in 
the n dimension. The biases 𝒃(!) are also learnable parameters. 
The area of each successive layer in a CNN architecture 
decreases (assuming no padding) which means the learnable 
parameters of the successive layers extract successively larger 
scale features. 
    For resonator power tuning, the power-sweep datacubes are 
three-dimensional, and the spatial information between all the 
dimensions could be best exploited with a CNN architecture. 
Fig. 3 shows an arbitrary implementation of the first few layers 
of a CNN-based algorithm for resonator power tuning. The 
benefits of both FCNN and CNN architectures could be 
exploited by using several convolution and pooling layers, 
followed by fully connected layers.  

CONCLUSIONS 

It has been shown that a simple machine learning algorithm 
is an interesting new method for characterizing resonator arrays 
for readout. The advantages are that it can potentially 
characterize an array of many thousands of resonators in just a 
few seconds – compared to manual inspection, which takes 
many human hours. This advancement is vitally important as 
more kilopixel resonator arrays come online and as 104 pixel 
scale array are developed. Dodkins et al. (2017) [15] details the 
implementation of a CNN algorithm for resonator classification 
and provides a comparison with conventional analytical 
algorithms in order to quantify the accuracy.  
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