Noise Performance of ALMA Band10 Receivers Employing High-*j*_c SIS Mixers

M. Kroug^{*1}, T. Kojima¹, Y. Fujii¹, K. Ohtawara¹, A. Miyachi¹, and Y. Uzawa²

¹ National Astronomical Observatory of Japan, Mitaka, 181-8588, Japan ²National Institute of Information and Communications Technology, Koganei, 184-0015, Japan *Contact: matthias.kroug@nao.ac.jp

Abstract—Current ALMA Band10 cartridges covering the frequency range 790 – 950 GHz are equipped with SIS mixers based on standard Nb/AlO_x/Nb junctions integrated with NbTiN/SiO₂/Al strip lines for the embedding circuit. The current density j_c of the AlO_x-barrier type junctions is 10 – 14 kA/cm². While the sensitivity performance complies with ALMA receiver noise specifications, tolerance margins are small because of the rather narrow RF bandwidth of the devices [1]. We have fabricated and tested a new set of mixer chips using Nb/AlN_x/Nb SIS tri-layers with current density $j_c \sim 30$ kA/cm² and low leakage. Circuit design is unchanged except for small modifications in the geometry of the matching circuit to accommodate higher- j_c junctions. Compared with junctions in all-Nb SIS circuits, these junctions. This is likely because of degraded quality of the tri-layer when grown onto the NbTiN film instead of a blank quartz substrate. The high- j_c mixers under test have a gap voltage of V_{gap} =2.65 mV and sub-gap to normal state resistance ratios $q := R_{2mV}/R_n = 16 - 17$ (all-Nb devices: $V_{gap} \sim 2.8$ mV, q = 20 or above). For noise performance characterization mixers are mounted into a Band10 cartridge type test set-up. Measured DSB noise temperatures are below 150 K up to 900 GHz and then increase moderately to $T_{rx} = 175$ K at 940 GHz. This fairly flat frequency dependence is a significant improvement over the low- j_c mixers.

However, we encountered several difficulties in finding optimum bias conditions for low noise performance *and* linearity. Depending on the position on the mixer's power voltage curve, we observe points with gain expansion or gain compression, a phenomena described in [2]. This is directly related to the voltage swing in the IF output power around $V_{gap}/2$ and seems to be more pronounced for mixers based on high- j_c junctions. Details of the measurement method and analysis of the results will be presented at the conference.

[1] Y. Uzawa, "Development and Testing of Band10 Receivers for the ALMA Project," *Physica C*, vol. 494, 2013 [2] C.E. Tong, "Gain Expansion and Compression of SIS Mixers," *IEEE Transactions on Applied Superconductivity*, vol. 19 (3), 2009