Design of a Silicon-based 160~320GHz tanh-profile wideband Corrugated Horn

Jie Hu^{1, 2}, Zheng Lou², Hao-tian Zhu³, Wei-tao Lv², Dong Liu² and Sheng-Cai Shi²

[2]

Abstract: This paper presents the design and simulation a silicon-based 160~320GHz wideband corrugated horn. The horn is formed by stacking 30 gold-coated silicon platelets [1]. The corrugation of the horn is formed by photography and deep reactive ion etching (DRIE). The tanh profile is chosen to make the horn compact as compact as possible [2]. The corrugated horn is simulated by a home-made mode matching script. The simulated beam patterns across the frequency band are shown in Fig. 1. It shows great symmetry and low sidelobe and cross-polarization level, which are below -35dB and -20dB respectively. The S11 is also below -20dB across the frequency band. The effect of the rectangular to circular waveguide transformation has also been taken into account.

Fig. 1. Simulated far-field pattern of the corrugated horn. The black curves are E-plane, the red curves are H-plane and the blue curves are cross-polarization in D-plane.

REFERENCES

- J. Britton, K. W. Yoon, J. A. Beall, D. Becker, H. M. Cho, G. C. Hilton, M. D. Niemack, and K. D. Irwin, "Progress toward
 - ¹ APC, University Paris Diderot, Paris, 75013, France.

NOTES:

corrugated feed horn arrays in silicon," AIP Conference Proceedings, vol. 1185, no. 1, pp. 375-378, 2009.

J. E. McKay, D. A. Robertson, P. A. S. Cruickshank, R. I. Hunter, D. R. Bolton, R. J. Wylde, and G. M. Smith, "Compact wideband corrugated feedhorns with ultra-low sidelobes for very high performance antennas and quasi-optical systems," *IEEE Trans. Antennas Propag.*, vol. 61, no. 4, pp. 1714-1721, 2013.

² Purple Mountain Observatory, 210032, Nanjing, China. .

³ LERMA, Observatorie de Paris, Paris, 75014, France.