Mid-infrared heterodyne receiver based on a superconducting hot electron bolometer and a quantum cascade laser

Yuan Ren^{1,2}, Daixi Zhang^{1,2}, Kangmin Zhou^{1,2}, Wei Miao^{1,2}, Wen Zhang^{1,2}, ShengCai Shi^{1,2} 1.Purple Mountain Observatory, Chinese Academy of Sciences, 8 Yuanhua Road, Nanjing, China, 210034

2.Key Lab of Radio Astronomy, Chinese Academy of Sciences, 8 Yuanhua Road, Nanjing, China, 210034

The mid-infrared frequency region plays a vital role in the modern astronomic research, which includes early cosmic evolution, star and galaxy formation, and the planet's atmosphere research. However, the high-resolution spectrometer in this frequency region is still under developed. This paper focused on the development of a heterodyne receiver based on a superconducting hot electron bolometer as a mixer and a quantum cascade laser at 10.6 μ m as a local oscillator. A superconducting NbN hot electron bolometer working at 4 K was utilized as the mixer, with a combination of a hyper-hemispherical lens and a spiral antenna employed as the coupling element. A distributed feedback quantum cascade laser providing more than 30 mW power at 10.6 μ m served as the local oscillator. The double sideband receiver noise temperature (T_{DSB,Rec}) was characterized with a Hg lamp as hot load and room temperature blackbody as cold load, and the T_{DSB,Rec} was measured to be about 5000 K with an intermediate frequency bandwidth of 2.8 GHz.