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Kinetic Inductance Detectors (KIDs) have been proven to
be an interesting technology for continuum detection from
the mm-wave to infrared frequencies. Their intrinsic
multiplexibility makes the fabrication of large arrays
relatively simple, and a number of instruments have shown
high quality performance on telescope, while many more
instruments employing this technology are being
developed.

A major challenge in fabricating large KID arrays is the
frequency scatter of individual detectors, due to fabrication
imperfections. This frequency scatter inevitably causes
cross talk when two pixels get too close in resonance
frequency. This problem can be mitigated at the expense of
increasing the available frequency bandwidth per pixel, but
this approach significantly limits the possible number of
pixels, and is therefore not preferred especially when
readout bandwidth is a scarce resource.

In this work, we follow a different approach, inspired by
the work of Liu et al. [1]. We demonstrate that it is
possible to improve the frequency scatter and readout
bandwidth of an existing KID array, by individually
adapting the on-chip capacitors of the individual pixels. We
show the viability of this approach on a small (112 pixel)
prototype array, optimized for detection in the 230 GHz
atmospheric window.

After fabrication of the array, we characterize the optical
response of all pixels using an optical cryostat and a sky
simulator. This allows us to identify each individual pixel
with its position on the array and its resonance frequency.
As shown in Fig. 1 (top), the resonance frequencies show
an irregular frequency comb, with a scatter of a few percent
around the design frequency. [2]

We use these characterization results to define a unique
adaptation mask. This mask allows to trim the capacitor
fingers of each individual pixel, such that after this
trimming, the resonance frequencies form a regular
frequency comb. The resulting feedline transmission of this
array, after adaptation, is shown in Fig. 1 (bottom). It can
be clearly seen that not only the necessary readout
bandwidth is reduced by ~ 15%, but more importantly, the
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frequency scatter is reduced by approximately 2 orders of
magnitude.
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Fig. 1. Feedline transmission of the KID array before (up) and
after adaptation of the individual pixels. The necessary readout
bandwidth is reduced from 562 MHz to 490 MHz, whereas the
frequency scatter with respect to the design value is reduced from
~2%to~0.02% .

In this contribution, we will discuss in detail the causes
of the observed frequency scatter, the methodology to
improve, and the limitations of our current procedures.
Besides that we will focus on the feasibility of this
trimming method for larger arrays, such as the NIKA2 1.3
mm arrays, that currently host 1140 pixels, and can be
estimated to go up to 2500 pixels per array, using the same
readout electronics. We will also discuss possible
improvements on the characterization method and the
trimming procedure.
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