```
Dr. Phillip Nolan
Farrand Optical Co.. Inc.
Bronx Blvd. & East 238th Street
New York 70, New York
```

Dear Dr. Nolan:
Dr. Heeschen and I wish to thank you and your colleagues for the time and hospitality given us last week on our visit to Farrand. I was greatly impressed by the $12-$ inch inductosyn and other devices that were demonstrated and I have since been reading the manual you loaned us.

When we left, we had agreed to give you a detailed statement of the components or systems on which we would want a price. to be incorporated in a general cost study we are making of the various altazimuth and equatorial radio telescope designs. These cost estimates will enter importantly into the considerations leading to the dacision of what design or designs will be sent out for formal bids. Hence, we are seeking lump sum figures rather than CPFF development estimates, such as might have been necessary on the twelve-inch inductosyn several years ago. Thus, we hope to have reasonabiy firm pricss, although it is recognized that during the formal bidding Farrand would have the right to revise these figures, either in dealing directly with us or with some companies that agreed to submit a joint bid on the entire telescope.

It appears that we need cost estimates on three systems, which might be sub-parts of a more comprohensive drive and control system. In each case it would be helpful to have a description of the system as well as the cost estimate. e.g. in the first case below, to list the number of inductosyns, oscillators, amplifiers, single speed synchros, drives for indicator dials, etc. that are involved:

> Case I. A system to measure the angular position of a shart, relative to some arbitrary reference mark, the shaft position to be displayed at some remote location (several hundred feet away) with an accuracy approaching in of arc. Assume that the shaft may be turned in oither direction; that if the shaft is turned at a fast slewing rate, such as 20° per minute of time, continuous high precision is not required, but the indicator must not drop out
of synchronization; that if the shaft is turnod at alow rata, puch as 10 In two minutos, the indicator should follew continuously and with a lag of not more than $2-2^{2}$ of are.

Case II. A command system that might be used. fer oxmaple. on wnteclination or polar axis of aty equaterial telescope. whereln the desired pesition is get-in on dialt elther manusily or autematicaliy and continuevely as win a sdereal clock. The output of your appropriate anplifimgs woulit thin be used to contrel the lectric or hydraullt moters that wonld tusn shate. You noed net Inclute ouch powns moters in your syatem. (Thus in Fig. 2 of your manusi. the small motor shom might be meplaet by a peore amplifiez and mach larger metor and those pownz olomonts should not be incluyded in your ostimate). The actal pesition of the dilven shatt should then be compesed with the comand position and the exror displayed with a precision
 for Caed I would also apply to Case II.

Case IIt, A coordinate conversion systom specifically to regoxvo command pesitions of hourangle and decilination (beth might vary continuously to compensate for atmospherie refraction, gear exrors, or other systematic factors in aditition to the input frem a sidereal clock, as in changing from one stellar object to anether) (to convert the hourangle and declination inte azimath and aititude (or zenith distance): to amplify these outputs to control servo perver motors. as deseribed in Case II and to compaxe the actual positions of the aximuth and altitude shafts with the command positions, or as an aiternative to compare the actual hour angle and declinetion with the command velves. Again the angulaz volocity and accuracy consideration described In Cas. I would apply.

From our discusoione i bellove you ase awaze that gom astronomers
 Hence on way to do the orrex comparisen discussed in Case II and III would bo to use completely indppondont poeltion indiatters (and coosdinate conversion, fer Case III) to permit a dixeet visual compayison of the "comaad" dials and "ndicator" dials. On the othex hand, we recognise that this Fequises the chapliention of sovesal cestly components. Hence, we chould consider whatever you connider to be the best of the several alternatives described to us, provided that the system would cleasiy indicate if those wex a sesious failure.

Mr. J. O. Silvey, of the MIT Sexvemochaniams Labosatozy, who visited you on previous occasion concezning our zadio telesespe problems, is coordinating our offerts to get prieet on all the various components or sub systems thit tuight q° into the drive and contrel system for an altazimuth or equatoxial telescope. Foz oxample. he is getting us prices on the power unite that would be controlled by your system in cises II and III. It you have any auestions concerning the cut-off point of your ostimates, I will be glad to try to help. but as I would probably have to first talk with me. Silvoy, I suggest that you take up any such matters with him.
cc: Heeschen
Silvey
Karelitz

Sincerely yours,

Richare M, Emberson
Assistant to the President

