14th Deeumber: 1964.
Protemeor P. A. Davis,
Indim 8tatiotionil Imetimet.
203 Barregkpose Erumk Road.

Dent Professor Davia,
Beentiy I have had ay attontion anilod to an

 cuficiontiy mergetic to porions an expmerimat.

Yy exition profor to IIm fandt and axplain how it abould be dome bat decilize to do mythine.

I heve beon in coxyeapendencen fith $n_{\text {a }}$ Iovert

 withont result. If ITM empuriot ery otime hante I will be pleamel to lomin the otmili.
 pain troes. In partypur It invorentod in the
 longel trite.

Euneaxaly

Sretamper

CIIJEC
(Reprinted from Nature, Vol. 202, No. 4935, pp. 927-928, May 30, 1964)

Foliar Spiral and Yield in Coconuts

The leaves of the coconut palm are arranged in five spirals which run in clockwise or anti-clockwise direotion ${ }^{1}$, the phyllotaxy of each spiral being nearly two-fifhs ${ }^{2}$. Patel ${ }^{2}$ mentions that in a majority of trees the direction of the spiral is towards the left. Observations ${ }^{5}$ on lerge numbers of palms from India and elsewhere, however, indicate that the distribution of 'lefts' and 'righta' is almost equal with a slight excess of 'lefts'. Available evidence ${ }^{\text {a-s }}$ also shows that the spiral character of the palms is non-inherited and probably not determined genetically.

Narayana" was the first to examine the relationship between spiral character and yield of coconuts. From his observations on 70 trees seleoted at raadom frem different Field groups, he concluded that the difierence bet ween the means of the two groups left and right was not significant, showing that the direction of the spiral has no bearing on yield. Davis' from his examination of 128 'healthy palma' in the Contral Coconut Reeaarch Station, KayamEulam (a place affected by a doventating virus disease of cocmante). prodered evidence to show that the lifi-apinallod trees give significantly highor yields than right-spiralled, a finding which he considers to be a novel biological fact. His own observations on 'moderate' diseased and 'severe' disessed palms from the same Station. however, did not reveal significant difference in mean yiolds of lif- and right-spiralled trees. He, however, belioves that "the figures for diseased trees, though not quite significantly different, strongly reinforce the significance of those for the healthy trees". In the same data published elsewhere Devis remarks: 'The 'lefts' give 20.9 per cent axceas yield of nuts over their counterpart, although it is besed on a non-inherited character, and that is quite inexplicable. Among diseased palms aloo the difference is in the positive direction but not significant by itself. The number of the leaves of the 'lefts' is slightly greater and thit may account, ir part, for the increaed yield of nute of the 'lefts' . . ."

The foregoing finding of Davis is at variance with that of Narayanse. In view of the conflioting resulte reported,
 was re-investiggted by us, making use of the wealth of data available in the Central Coconat Researah Station, Kasaragod, whers moticulous details of yield ahracters, like number of apathes produoed, female flowe penduotion, setting percentige, yield of nute per branah, eth., see

Table 1. Mran Yitid of NUTS (10 TEARs 1942-51)

Yield groap	$\stackrel{\text { No. of trees }}{\text { Reft }}$		Rlight ${ }^{\text {Yleld }}$ Left	
1 Law (below 40)	87	127	30.06	31.53
2 Maitum ($40-80$)	288	884	57.63	57.04
8 High (above 80)	40	41	89.89	89.54
Totel	415	502	$54 \cdot 9$	83.2
	${ }^{\mathbf{3}}$	0		0.0258 0.8

a few thousand trees for several years, are available. Date on yield of copra per palm per year, mean oopra content per nut and oil content of copra for a few hundred trees have also been gathered. In Table 1 are presented date on yield of nuts of 917 trees belonging to different yield groups growing in the main block of the Central Coconut Research Station. A perusal of Table 1 ahows that the yield of nute of both 'lefts' and 'rights' in the three yield groups and the total as a whole is almost equal, the differences not being significant.

Data on annual production of leaves, nuts and copra ais well as mean copra content per nut and oil percentage in 108 palms selected at random from among the 917 trees are presented in Table 2, which also do not indicate any significant differences botween 'rights' and 'lefts' for any of the aforementioned characters.
The prement reeults thus establish clearly and unequivocelly that in the populations of coconuts investigated by as the left-spiralled trees show no superiority over the right-spiralled, either in yield of nuts or in any of the other characters investigated. Since ther materials used in this inveatigation and that examined by Davis belong to the same variety of ooconuts (West Coast talls) growing under almost identical climatic and soil conditions, it would be quite inconceivable if in one 'population' the 'lefts' show mach a remarkablo increase of $\mathbf{2 0 . 9}$ nuts over the 'rights' while in the other there is no indigation of this superiority. It would thus appear that the reliability of Davis's claim has to be further verified from adequate data from a normal popuiation of coconute-especially in view of the feot that the pre-treatment dute in the case of the healthy trees exsamimed by Davia did not reveal signifioant difference between 'lefts' and 'righte' as was the case with the two diveased groups of trees. The futility of striving for ecplanations of phenomene thet may not oparate at all

Prof. Preeton quoted by Davis": "The connexion between the yield of coconut palms and the tilt of the conducting tissue is very intriguing indeed and is so unexpected as to be on the verge of the credible. Since the sign of the spiral is not inherited then one is compelled to assume that the orientation of the conducting tissue affects the disposal of the materials being conducted and I know of no mechanism which would incline me a priori to have believed auch a phenomenon".
We thank Dr. K..M. Pandelai, director, Central Coconut Research Station, Kayamkulam, Kerala, for his advice.
K. Satyabalan
C. A. Ninan
M. M. Kribina Marar

Central Coconut Research Station, Kasaragod, India.
${ }^{1}$ Petah, T., Ans Ray. Bat. Gavd. Penadomiya, 5, bs8 (1911).
Patel, J. Bo The Cocomed: a Monograph, 71 (Govermmont Press, Madras, 1\%8)

- Devier T. A., J. Genco., 84.12 (1902).
 Hitadia, 1052).
${ }^{-}$Devie, T. A. J. Gonci, E5, 180 (1903).

- Derian T. A.s Rxperimitia, 18, 321 (1002).

