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Absiract - This paper deals with the computation and measurement ofihe
inpuf impedance of folded-dipole antennas. A generalexpression for the
input impedance is given in terms of the self- and mutual radiation im-
pedances and the transmission-~line impedance of the two conductors
composing the folded dipole. Approximate values of the radiation imped-
ances are computed using induced emf with sinuscidal current disiribu-
tions and integral equaiion methods. Experimentally and theoretically
determined curves representing the resisiive and reactive components
of the input impedance as functions of frequencyare given for represent-
ative folded dipoles having equal- and unequal-size conductors. Insome
computations the effect of the gap capacitance at the feed point was taken
into consideration.,



I. Introduction

In recent yvears folded dipole antennas have been used extensively
as receiving and transmitting antennas in such VHF and UHF applications
as FM and TV broadcasting and radio communications, 3 In addition, folded
unipole antennas, whichare essentially half folded dipoles plus ground planes,
have proved popular for radio communication applications such as police
radio and other emergency communication s;er:vices.‘2 Hence, for these
applications alone, the folded dipole is of considerable interest from the
practical point of view.

The extensive use of folded dipoles and foldedunipoles is attributable
to their following characteristics

(1) Their input impedancesare considerably higher than those
of simple dipoles and unipoles. Transmission lines of higher
characteristic impedance than for simple dipoles or unipoles
can be properly terminated; hencetransmissionlosses can be
reduced.

(2) Their input impedances can be altered by changing the
ratio of the diameters of the conductors formingthe two sides
of the folded dipole.

(3) They have broad-band frequency characteristics compar-
able with those of simple dipoles and unipoles made from con-
siderably larger conductors.

(4) They can be connected directly toground to provide light-
ing protection without affectingtheir performance character-
isiics.

(5) They are easy to manufacture.

In addition to the interest in folded dipoles from the practical point
of view, they are of considerable interest theoretically. The folded dipole
is actuallya rectangular loop antenna havingalarge ratio of length to width

and carrying a monuniform current. Ifthe actual current distribution is

% See end of paper for numbered references,
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known, the impedance of the antenna can be computed. However, the prob-
lem of determining the current distribution is a very difficult one tosolve,

In solving for the current distribution and hence impedances of two
identical coupled antennas, King and Harri.son3 have resolved the applied
voltages and the currents into symmetrical and antisymmetrical components
following a suggestion made independently by Dr. A. H. Wing, and Mr. Roger
Clapp. They utilized Hallén's? integral equation 1. ithod of determiningthe
current distribution. Their computations were limited to spacings greater
than 0.05 wavelengihs. They showed thatthe current distribntiens on coupled
parasitic aniennas are different from those on the driven aniennas; that the
self-impedances of the antenna elements are functions of spacing when the
spacing is small; andthat the assumption of sinusoidally distributed currents
is incorrect even in infinifely thin antennas for antemna lengths differing
appreciably from a half wavelength. These results are contrary to the
assumptions which are made in computations involving assumed sinusoidal
current distributions fellowing the procedures given by Ca.rtt-:r5 and Brown,é

Tai7 and then King8 in August, 1952 have improvedthe method used
by King and Harrison.> Tai has shown that for two closely-coupled anti-
symmetrically-driven antennas that the solutionreducesto the conventional
one obtained ‘rom transmission-line theory, Mor itag has checked experi-
mentally the current and charge distributions predictedtheoreticallyby Tali.
The agreement was good.

These results for coupled antennas lead one to attempt an analysis
of folded dipole antennas by ireating them as coupled antennas, For sym-

metrical applied voltages, the current distributions and impedances should
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be essentially the same as those given by King and Harrison and Tai for
closely spaced coupled antemmas For antisymmetrical applied voltages,
the current distribution’and the inpuf impedance should be the conventional
ones for shorted open-wire lines obtained from transmission line iheory.
Folded dipoles formed fromtwo identical conducting rods connectedtogether
at their ends have been given brief theoretical consideration by King and
some of his associates at Cruft Laboratory. King gives the following ex-

pression for input impedance of a folded dipole for conditions near half-wave

resonance: 10

Z :Z(ZSI +[.

in 12)

where ZBl is the self-impedance of the driven conductor, and Z is the

12

mutual impedance between themn., Both impedances being computed by me-
3

thods for coupled antennas, For thin conductors and small spacings, ZSl

and le do not differ greatly so then Z, =~ 42.s

10
Van B. Robertis has considered the problem of determiningthe input

in

impedance of folded dipoles formed from two conductors of different size.
He utilizes anelectrostaticapproachto determine how the charge and hence
currents divide beiween the two conduciors. He has shown that the input

impedance at resonance is approximately given by“

2

Z
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where R is the radiation resistance of the two conductors connected in par-

allel, ZOl is the characteristic impedance of a transmission line formed of
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two conductors like the driven element and with the same center~-to~center

spacing as the actual anfenna elements; and Z is similarly defined buif

02

for the parasitic element. Guertler by means of an esseniially equivalent
method of approach has obiained the same result as van B. Roberts but has
considered folded dipoles of two and mere elernem:t;s,‘12

Schelkunoff and Friis have extended van B, Roberts’ analysis and

give the following formula for the input admittance of a folded dipol :13
2 .4
& cikoa |
Ty, = ZJYOcotﬁh-i—Yp +ZTZ_

where YO is the characteristic admiftance ofthe conductors energized anti~
symmetrically or in push-pull, and Yp is the inpuf admittance of the two
conductors connected in parallel. This formula is similar to the formula
developed in this paper and ylelds approximately the same results for many
cases of practical interest.

This paper will include, in addition to the development of a formula
for the input impedance of folded dipole antennas formed from conductors
of unequal as well as equal size conductors, typical compuied impedance
curves, and the comparison of these computed curves with experimentally

determined ci:rves,

II. Derivation of Impedance Formula

A iypical folded dipole made of conductors of unequal size is shown
in Fig. 1{a). It is assumed that conductor l,the driven conductfor hasa radius

aj; conductor 2hasaradiusa,;andthatthe conductors are spaced a dislance



b beiween their axes. Since the system is linear, the principle of livear
superposition may be applied to resolvethe problem of determining the in-

put impedance as seen by the generator V. into two less difficult problems.

1
If the folded dipole is picturedas two closely~-coupled elements hav-

ing self-impedances Z"S and ZS“ and coupled by a mutual impedance Z

1 2 12°

the following circuital equations can be written:

o ? %
V=250 + 23,0

(1)

=Z' 1 z' ¥
RS g ¥Rty

In writing these equations it is assumed that the generator whose voltage

is V1 is a point generator, that the currents I1 and IZ are the currents at

the midpoints of elements 1 and 2, respectively, and that the impedances

Z.;l, Z"SZ and Z ;2 are based on the actual current distributions on the folded

dipole. The input impedance determined by Eqs. (1) is given by
(2) L2ig® 2} (Z4 2/za )
L7 m ™ “sl " "l s2

]

If the impedances Z"s Z ' and Z4

1’ T's2

could be used to determine the inpu! impedance to the folded dipole. How-

were known this expression

ever, it is necessary to know the current distributions on conductors 1 and
2 in order to compute Z;l, Z;Z and Zl“z. These current disiributions are
not known and cannot easily be approximated. Hence, the currents at the
midpoints of conductors 1 and 2 will be resolved into symmetrical and anti-
symmetrical components; the distributions associated with the symmetrical

and anti-symmetrical components of these reference currents will then be

approximated; the input impedances associated with these componenis will
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be computed; and then these impedances will be combined in such a way as
to yield the input impedance resulting from the reference currenis.

Figure 1(b) repreéents the problem of determining the input imped-
ance of two closely coupled elements carrying equal ‘‘push-push’’ or sym-
metrical currents. Figure l(c) similarly represents the problem of deter-
mining the input impedance of twoclosely-coupled elements carrying equal
‘‘push-pull’’ or antisymmetrical currents and constitutingtwotransmission-
line stubs with their ‘‘receiving ends’’ shorted and their ‘‘sending ends’’
connected in series,

By setting

(3)
Iy =Ty |

whereIgand I, are symmetricaland antisymmetrical components of current,

respectively, Egs. (1) become

Vy=(24+25) I+ (28 - Z2Y,) L,

= (z ' A
0.(Zs + Z )IS+(Z2 R g

3 243 1 st by
If we set,
= (70 1 = 1 _ 71
" () V, = (2!, +2',) 1 () Vi, =(2) - 21,1
(b) V,o =(20, +2Y,) T (d) Vp, =(2Lp - 2131,

then Eqs. (4) are equivalent to

(6)
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Since V, -V, mustequal zero, it follows by Eqs, (5b) and (5d)

that

-~ ' ' 1 _ 7t
(7) La/tg = (245 + 2Y,)/(2 5, - 21))
Equations (5) also imply that

¥ 1
A% Z -7

A4 Z'_ + Z! \"4
Vis Z5 t ZlZ 2s 2a “e3™ 513
A"
and () la _rA
VvV

ls

Since V| = vls[l - (Vla/vls)] = Vls(l + RA), it folkows by virtue

of Egs. (8) that

VlS=V1/(1+RA) vla=v1/[1+(1/RAﬂ

and

st = - VZa. = vls R

These equations show that for folded dipoles of unequal size con-
ductors, the potential of conductor 2 is different in absolute value fromthat
of conductor 1 when the conductors are carrying antisymmetrical currents.

If Eqs. (9) are substituted into either the first two or the last two

of Egs, (5), the following expressions for I, and I, are obtained:

(10) 1=V /[(1+RO)Z! + Z'lzﬂ =(v /2)(z} -z!)/D

I, =V,/[(1+(1/RB)) (2! - zt )] = (Vv /202!, + 2 ')/D

2
o ol 1T 7t
where D = Zsl ZSZ le



il

The second forms of these expressions indicate that Is and I’a can
also be obtained by computing the currents in conductor 1 when push-push
and push-pull voliages of_'magnitude Vl_/Z are applied in fure at the mid-
points of conductors 1l and 2. However, if this is done, the magnitudes of
the currents in conducior 2 will be different from those associated with the
voltages, V_ ,V ,V and ¥V unless the two conduciors are of equal

ls 2s la 2a
size. Hence, the currents in conductors 1l and 2 will have different magni-
tudes; therefore they cannof be compuied using ordinaryiransmission-~line

theory. Byapplying the voltages V. and VZa of Egs. (9) to the conductors,

la
the currents in the two conducters are equal in magnitude and opposite in
sign as required by ordinary transmission-line theory.

From the viewpoint of ordinary transmission-line theory, the mag-

nitude of the anfisymmetrical current is given by

" & - — @ . ~ \’, . /. =~ . 4 NV

(11) L=(v, _+ \/Za)_/zzsc v R(1 +A)/ [ (1 + Ra )zzsgj,,,. /22
where

{12) Zsc,fz 3 ZO tan Bh

is the input impedance of a shorted transmission line whose length is equal
to the half~length of the folded dipole and whose conductors are identical
in size and spacing with those of the folded dipole. The characteristic im-
pedance 7,0 is computed using the following formula for unequal size con-

ductors:

Cc



(13) ZO = 138 log]OE(b/Zal) - \/—('E/z,al)"‘ - fJE(b/ZaZ) +%;/2a2)2 -n

A satisfactoryapproximate expressionfor the symmeirical or push-~
push current is muchmore difficultfo find. If symmetrical voltages, each of

magnitude Vl/Z are appliedtoequal size conductors, Eq, (10)with 2}, =z’

81~ Ts2

could be used to compute Is if the impedances Z!‘.l and Z;Z were known,

o g = -
However, for this case, values of Zsl = Zsl and le = le, where ZSl and
7

Z 12 are computed by the method used by King and Harrison3 and by Tai

in their analyses of coupled aniennas, could be used, Alsp, as aless exact

approximation Zs and Z

1 12

tions for the currenit distribuiions.

could be computedusing sinusoidal approxima-

5,6 Hence, one is led to utilize the latter

method in compuling Z 2 and Z for the case of unequal size con-

sl’ Zs 12

ductors and to use the resulis of these computations in place of Z'sl’Z'SZ”

) 7

impedance obtained by various approximate methods which are strictly

and Z' _ to compute Is“ Also, one is led to use values of self- and mutual

applicable only under conditions that proximily effects on impedances are
negligible,
Now that approximate methods of computing I, and Ia areavailable,

the input impedance of the folded dipole can be computedutilizing the formula

(14) 2. eV /0 1)
in gl a

[f Egqs. (6a) and (7) and approximate expressions for the various im-

pedances are properly utilized, Eq. (14) yields for I’a =0
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(15) 2. =(%

in =% 120 4 (2, 42508 =2(Z_ + 2

128

where A is defined in Eq. {8b). For equal size conductors A= 1 so

that

{10) g My + )

in agreement with the results of a previous analysis. & For I, # 0,

17 2 mizZV %) 7 S
( ) in sc lA/( 1A sc)
where
5 ]
(18) Zip =2+ 2, 8)
and
b ' oL
(19) z! =7 (1 + RA)/R(1+4) o



III. Impedance Formula for Sinusoidal Currents

Self~ and muftual impedances of linear anienna elementsare usually

computed by methods based on the assumption of sinusoidal current disiri-

butions alongthe axes of the elemenis. Thisassumptionleads to the follow-

ing formulas for the components of the mufual impeda.nce:]4

R, = (1/sin®gm{60[2Cigb - Ciglrgy + b) - Ciflr,, - b))
+ 30 [ZCiBb - 2CiBlry, +h) - 2CiB(x - )
(20) +CiB(r +2h)+CiB(r - Zh)] cos 2Bh
14 14

( - h) - (r {
+ 30 [zsm (ro, = B) - 2518 (r  +h) + SiB(r 4 2B)

-siplr - z.h)] sin zph}

oo {. ™ : . Lo
= (1/sin ﬂh)lbo [Sip!_r + h) + Sif (r04 h) ZSiﬁb]

X
12 04

{ i - -
+ 30 [25&.&:«04 + h) + 2Sip (r04 h) - 28ipb
(21) - s;a( ¥ 2h) - Si ﬁ(r - Zh)] cos 2Bh
+ 30 LZCig(r04 - h) = zcm(_rM +h) + Cip (r14 + 2h)

- Ci(r , - Zh_)] sin 2¢h }

~

In these formulas

U
o= [ coRE g
_—
Yo



and

u
Siu = ‘( Sin x dx
X
0
are the conventional cosine and sine infegrals,
The limiting forms of Eqs. (20) and (21) for small spacings b = a,
the radius of the conductor, yield the following expressions for the self-im-

pedance of the conducior:

Ry, = (l/slnzﬁh) Eéo(c + In 2Bh - Ci2Bh) + 30(Si4Ph ~ 25i2Bh) sin 2 Pfh

(22)
+ 30(C + In Bh - 2Ci28 h + Ci4Bh) cos 28 h}

2
X, =(1/sin" h) {60 Si2 Bh + 30(2Si2Bh - Si4ph) cos 28 h

(23)
" 30(1:1-:% -C - 1ln 2T - Ci4 Ph + 2Ci2 fh) sin 2B h.}

In these expressions Cx0,5772 is Euler’s constant.

7 . . o
The fact that 11 R11+.]Xlli.sali.mr!:mgformofz.l2

for small spacings suggest that A as defined in Eq. (8b) be computedusing

* Ryt 1%y,

the formulas for R 11 and X4 p in place of those for RlZ

ly, but withthe spacing b replacingthe radius a. If thisis done, Asimplifies

and XlZ’ respective-

to the following form:

(24) A =log (b/al)/log (b/az) = ZOl'/ZOZ

where ZOl and ZOZ are characteristic impedances as previcusly defined.
Also by Eaq. (8b), the ratio of the potential of conductor 1 to that of conductor
2 when they carry antisymmetrical currents is equal to A.

Utilizing the approximation of Eq. (25), the input impedance as given

for I = 0 by Eq. ( 15) simplifies to
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= L Z Z

(25) =T} 2[ a1+ 212 (2gy/ oz)]

In addition, if Zs1 and ZI;‘ are pure resistances, this expression becomes
(5] B A [R'sl ¢ R1z{*201-’/zoz)]

Since RS]_ and R1 , are approximately equal in magnitude, the last equation

can be further simplified to give

Then? r
(27) Rin = 2Ryy |14 (201/202)}

This equation is a useful design equation. Tf should be notedihat Ri %4qu
In S

for equal size conductors; that Ri.n< ‘:I:R.S 10 if Z4 l.< Zyp and thai Rin.> 4Rs 1

IE . o Ty
iR 01 02
In the introduction to this paper the equivalent of the following ex~

pression for the input admittance of a folded dipole was given:

. ca -2
T " ¥ o # YP(].+A)

where A = 201/202, According fo the analysis of this paper (See Eq. (17) )

Y. =

in (Y Y

!
14)

o=

SC+

Hence the {wo resulis are in agreement if
1 ; -2

The admiftance Yp of the two conductors in parallel can be shown
by solving the circuit equations for equal applied weltagez and sinusoidal

current distributions to be related to Y 1A as follows:
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L.+1
(29) Yp _1_5"_& = (L ./Vy) [.1 + (125/115)] = (YI»A) [1 + A]
i

4

where I.]s and IZs are the currents in conductors 1 and 2, respectively,

when excifed in parallel with a voliage Vl. Therefore the condifion for

agreement of the two results simplifies fo
{30) A =1

This condition is satisfied only if the two conductors forming the folded

dipole are of equal size.

IV. Computed and Experimental Results

Measurements and compufations of fthe input impedance of the two
folded dipoles shown in Fig., 2 were made, Both antennas were made of
copper tubing. The first antenna was made of 7/8~inch O,D. copper tub-
ing; the second, of 7/8~inch O.D. and 3/8-inch O,D., copper fubing, the
fed element having the smaller diameter. The elements were 2.8 feet
long and had center-to-center spacings of three inches.

Impedance measurements were made using the arrangement shown
in Fig. 3. Since a slotted line was used for impedance measurements it
wasnecessaryto use a balance~fo-unbalance fransformer (balun) between
the balanced folded dipole and the unbalanced slotted line, An experimental
method was used to determine the frequency at which the balun was a
half wavelength long before the anfenna was connected, Corrections were
made in the measured values of impedance for the effect of thebalun and

the associated coaxial ca.ble.15
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Figure 4 shows curves of the input resistance and reactance of the
folded dipole of Fig. Z(i%) as functions of gh, the half-length of the dipole
in radian measure, It should be noted thai there are two frequencies of
anti-resonance and one frequency of series resonance inthe range plotted.

Figure 5 shows approximately egquivalent circniis for frequencies
near the resonant and andi-resonant frequencies. Forthe lower frequency
of anti-resonancethe anti-symmetrical or **transmission-line’’ currents
are associated with an inductive reactance since shorted lines which are
less than a quarter-wavelength long are inductive., For the higher fre-
quency of anti-resomance, the shorted lines are capacitive since the
shorted lines which are more than a quarier-wavelength but less than a
half-wavelength long are capacitive., Forthe lower frequency ofantireso~
nance the symmetrical or “‘antenna’’ currents have associated with them
an impedance which is capacitive since a simple linear antenna element
has a capacitive impedance for half-lengths appreciably shorter than a
quarter wavelength. For the higher frequency of anti-resonance, an an-
tenna element has an inductive impedance, Series resonance occurs at a
frequency betweenthetwo anti-resonant frequencies. The impedance as~
sociated withthe transmission line currents is sohighastobe almost neg-
ligible for frequencies at or mear the frequency of series resonance of
the folded dipole. Series resonance of the antenna having equal size occurs
for a frequency of 160 megacycles per second, Sincethe antenna elements
are 2.8-feet or 85.3-cm long, series resomance occurs for this antenna
when its length is 91.5 percent of a half wavelength. Ai the frequency of

series resonance the impedance of this folded dipole is 263 ohms. By
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Eq. (27) with Rs = 73.2 ohms the impedance would be 292.8 ohms,

1

Figures 6 and 7 g‘ive curves representing computed and measured
valiues of the input resistance and input reactance of the folded dipole of
equal size elements, The computed curves of Fig. 6 were based on an
assumed sinnsoidal distribution of currents on both elements, Those of
Fig. 7 were based ona distribution of current determined by Tai's method
for conpled element s.! Both figures contain curves which show the effect
of a shunt capacitance of 0,65 mmif acrossthe gapin the excited element,
This value of gap capacitance was based on low~frequency measurementis
of the impedance of a center-fed element like that of Fig. 2(a). The
agreement befiween measured and computed values is reasonably good
for frequencies af or near series resonance, Ovearall agreement in the
frequency range for which computations were made was better when gap
capacifance was taken into account, However,the inclusion of a gap ca~-
pacitance fended to make the agreement in the resisfance values poorer
for the lower frequencies.

Figure 8 represents the input resistance and input reactance of the
folded dipole of unequal size elements (see Fig, 2) as functions of electri~
cal lengith. One pair of computed curves is based on a sinusoidal current
distribution, Since no adequate theory of coupled antennas of unequal
size conductors is currently available, the other is based on sinusoidal
distributions for the mutual impedance, but on the distributiondetermined
by the King-Middleton method, for self-impedance 5.16 The agreement
between measured and computed values is fair., It should be noted that

series resonance occurs for anfenna lengths of about 92.5 percent of a
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half wavelenglh and that the resistance at resonance is larger than thal
for equal size elements‘. However, the measured value of resistance is
appreciably larger than the computed value. The approximate equation
(27) with Rsl = 73.2 ohms yields a resistance of 435 ohms, This value
is about 50 percent larger than that for a folded dipole with equal size
elements. If the experimental valuesare compared for the two antennas
it will be found.that Eq. (27) gives an approximation to the percent in-
crease in resistance resuliing frommakingthe fed element half as large

as the other element.

V. Conclusions

The results of this invesfigation show that the input impedance
of a folded dipole can be computed with fair accuracyusing the following

equations (element 1, the driven element):

Z gzt 2t gl oy
in 5C lA/( 1A+ sc)

]
Z1a=Zg; + Z58)
§ sz ~2 )2, < Z,)
' -
z' =z__(1+RA)/R(L4+4) Z__

Z_.®jZg tanfh

il

R (Z o+ 2)/(Z 1 +2,)

N
il

o =138log . [(b/lal) Jﬂ/(;/z‘axl)2 - 1 ]&b/zfaz)Z +\/(b/2a2)2 " 1]
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In these equations the impedances Zsl’ ZsZ and Z 12 should be computed

utilizing a method for closely coupled antennas such as that discussed by

Tai for the special casé of equal size conductors.T No results ofan ad-
equate theory of coupled or unequal size conductorsare currently avail-
able. However, Zsi" Z52 and Z.12 can also be approximated utilizing
Eqs. (20) to (23), for which case A is given by Eq. (24).

The values of input impedance determined by use of the latter
approximations are somewhat high as would be expected. At series re-
sonance, the folded dipole formed from equal size conductors yielded an
input resistance of about 263 ohms, experimentally, but a value of 293.8
ohms, when computations utilizing Eqs. (20) to (24) are made, - a fairly
large error. Nevertheless, the theory does give a good approximation
to the percent change in input impedance at series resonance as the ratjo
of diameters of the conductors is varied from a ratio of unity.

For design purposes, if an experimental value of the input re-
sistance is known for one ratio of conductor diameters, and the conductor
spacing is small then the following simple expression can be used fo

approximate the resistance for some other ratio of conductor diameiers

or some other conductor spacing:

R 1 + A
R - ;
R{n 1 ¢+ &

where A now equals the ratio of characteristic impedances as given by

A=2Z /Z = log(b/a )/ log (b/a ). The value of A'is given by the
01" 02 1 2

same expression as A if the appropriate radii and spacing are used.

Series resonance can be expected to exist for conductor lengths
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of the order of 90 to 95 percent of a half wavelengih depending upon the
size of the conductors, Small diameter conductors require the longer
1engths,.Hence,todesiénafoldedcﬂpoletoInaich,agivenline,the1engfh
of the conductors should be chosen for series resonance at the desired

frequency; the ratio of conductor diameters, for impedance match; and

the cornductor sizes and spacings, o meetthe broad-band requirements,
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Figure Capiions

’

Folded dipole antenna fromthe viewpoirt of the Superposition
Theorem and *‘push-push’ and “‘push-pull’” currents,

Physical dimensions of the antenras on which data is given.
Impedance measuring apparatus.

Measured values of the input impedance of the antenna of
equal size conductors,

Approximaie equivalent circuits representing elecirical be-
havior of a folded dipole for different frequency ranges.

Measured values of input impedance of the anienna of equal
size conductors compared with computed values based on
sinusoidal current disiributions, The gap capacitance was
0.65 mmif,

Measured and computed values of input impedance of the an-
tenna of equal size conductors compared with computed values
based on current distributions determined by Tai’s theory
of coupled antennas,

Measured values of input impedance of the antenna of unequal
size conductors compared with computed values based on
self-impedances deiermined by the King-Middleiton theory
of cylindrical aniennas and mutual impedances determined
by sinusoidal current distributions.
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