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PREAMBLE

First of all I would liko to transnit to the staff
of the Australian MNational University warm greetings from
their colloagues in the loscow State Undversity. I weould
also 1like to oxpress the hope that the culitural exchange
prograrme which is being initiated will not decay, but grow
in accordence with an exponential law. Our two univeraitios

have everything to gain from thils programrie.

Personal aecguaintance and face-to-face contacts between
gcientists are inconparably betiter than acquaintance through
literature. Sueh contacts will enable us to familiarize
ourselves with the best aspects of each of our universities,
to find common points of wiew and to achieve nutual understanding.
T also hope that we shall be able to assist one ancther in the
training of youhg sclentists.

Sclentific discussions which will arise among us, no
matter how sharply we may happen to disagree, will stinulate
cach of us and proapt us te review omce agaln our scientific

theories and to try to perfect our theoretical investigations.

In the Moscow State Unilversity I conduct a course on
gquantun mechanics fer fourth-year students. During oy visit
to Canberra I would like to devote my lectures to a
comparatively narrow topic, the THEORY OF SYNCHROTRON RADTATION.
Together with Professor Ivanenke I began to study this problen
in 1945 and sinoce then it continues to attract me and T often

return to it.




T. INTRODUCTION AND CLASSICAL, THEORY

i, Stetoment of problom

Consider particle of charge & (electron) rotating in circle

of radius a with constant tangoential volocity v.

v
Contrary to first appearances this problem is not gimple,

and a conplete solution is not yot available, egpecially for

ultra-relativistic energles. Recont experinental data for this

cage have impelled further study of the theory.

Classlical situation v £ ¢ ¢
£A) = % is angular velocity
N ﬂgi% = (%) a's > a is wavelengih of radiation.

Ultra-relativistic case (v =% o) has several differences fron

classlcal

\i) maxinma rediation oceurs at very high harmontes, harmonlo

nunber

v o~ c Ecz )3

0

™

For electron moc2 = 0,5 MeV; 1f total cnergy is
E = 50 MeV, then U ~~ 106, sa A ma10_6 a. Thus even
for nacroscopic orbits, synchrotron radiation will st111

e in visible or even ultra-viclet ramngo.

ii) Rediation is mot constant but fluctuating; a finite
number of guanta are emitted per revolution. Thua the
gquantum nature of radiation appears here on a macroscopic
scale, for slectrons at L ;b 500 eV, This is not Just

a small perturbation but a major effect.

iii) Radilation is highly polariszed, affected by spin properties

oI
of electronj thuﬁ/can study both features.




2. Dxperimental possibilities for electron synchrotrons

i} Photoproduction of particles
ii) EBlectromagnotic structures of proton and neutron
Now up to s 1 Bev {Hofstadter and Wiison)
Soon at ~ 6 Hev {Livingston's wachine)
Under construction for ~s 7 Bev (Hasburg, Erevan)
iii) Storage rings : ADA (Frascati) at 200 MeV
Under consitruction for 1500 MoV
Budker {(Movosibirslk) at 100 lieV

Under design (Livingston) for 3 Bev

Clagsically there would be no radiation from a confilnuous

ring of current, but quantum nechanically it cannot be‘

avolided. This enorgy loss is made up fron external sources
(magnotic field). Storage rings make possible the

preservation of anii-unatter ! posltrons live ~« 148 hours in ADA.

3. GClassical theory of electron radiation

i} Let the electrom orbit of radius a be in this xy-plane
centred at the origin. We observe the radiation at a
point P = ( r,9,'f) in polar coordinates. The vecton

potential at ¥ ils given by the Lienard-Wiechert form :
K:(g)Jﬂgl (T - v+ B)aT v (1)

where the +ime coordinate is T at the electron

and t at the obpervation point P, while R is the

ingtantanecus dlstance from the electron to P,

given by
2 ra 2 1
R=or (1 - '; + EE }? =2r - a sin 8 cos ?( vaef2)
E T
! ' . .
where % = Wt - %) is the angle of the electron in its

plane, relative to the projection of P.

N

Hote: Approximation (2) ignores terms of order i_
classical theory cammot do better, 3E'2
and this approxination underlies all
the radiation formulae of this lecture.

]
H



11) ITn formula (1) the o -function has the oxpansion

SO ) ETT?:!
J(f|}= %‘ E_: elz';( T ) ".‘(3)
p = -oo

rrfa

N

) o0 L iprwt
})%—.:’OO

Therefore

o
=0 R et PY, yowe-wr -9 T
v ) (4?

From this we can compute Ee, E‘P and He, HI,F and so

compute the radial Poynting vector at point P, which is

the outward flux of radiated enorgy ‘

_—
Vo = () (etp ~Hong)  e(3)

We are interested in the time-averaged flux at point P,

for which we use the fact that

cos ¥ (.@.Tﬂiﬂ) cos 12’ (%,Tt) dt =d1;v’:...(6)

w3

o
iii) Suppressing further detalls, we obtain the average energy

flux per unlt solid angle at P ,

au 15

(%{_’:%fﬁd“: vy coen{7)

12

2 Y2

dw 2.,.24h ' -
Dy _ e p AR 2. .2 2 2
(dfl ) = ST 2 [cot 8 Iy, (12 B sind) + B J;) (v B sine)]

where JU‘ = Bessel function, JL,7 its derivatilve.

The sum over 7?2 can be made in closed form |

L -
-:_l;-l: mmw——;:T'g g [1 + 30526 - '15(14-3 ’92}’?2 Sinhg)"
a o
a ) e (8)

(1-paein26)7/2
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As ﬂ w3 1, radiation all concentrates in plane of eleciron,
. 2 2
with bean width of order /\ g ~fi~ 8% = 0 0"/

The angular integral yields

1 - EEE _ e21)C 2 f N
T, _/.(dn) all= = [2,8 J2V(A 2 8)
s ceee(9)

- (1-8%) 3oy (0) dx]

Integration of Eq.{8) or swmation of Eg,(9) yields the

total radiation rate

W = ! E
T <l c ( /
a

R .o (10)

wim

iv) Historical remariks: These closed Yorms were unknown ab
the begimming of study of synohroiron radiation, They
were aftorwards found to6 have been published by Shoti in
1912, wheo was trying (unsuceessfully) to obtain a classical

theory for the radiation of atoms.

v) Asymptotic fornas, Formula (9) 1s not very transparent
for showing which harmonics contain the most energy. For
this we need asymptotic approximations to the Bessel functions
that are accurate near the maxinum of the Ffunctions. By

methods alin to the WKB approximation 1t is found that

=,

3/ '
§(x)~A [ RV x , laa(e(1-x/ ) 21 NEES
i 1/ T
¥ 3 P
where X is a Bessel function of ilmaginary avgument of the
second kind.
Then

2
1 62c (moc )2

N
— 7 d K
VYT s 2 e Y o vo 3™ ‘m( )
eeef12

where

D, -2 (luety o)

o]




This formula was obtained by Ivanenke and Sekolov (19&8}
and by Schwinger {(1049). An indirect check is obtained by

using it to calculate the total encrgy radiated:

fw -2 (£9) (5 2" !
o ity ) 0y o2) e (1)

Thie differs from the exact formula (10) oniy by the abaence
"of a factor ﬁ!h suggesting that the approximation {11) is
valid so long as }9 ~2 1, which is just the ultra~relativistic

case under consideration.

Graphically
le
T '1)
i \e--/‘
i e 12 = U 2
3/ o [ 2 "o
2 \\\
1 -V
o
vi)} Experimental verification. Pollock et al. (19&8) saw

bluish light from a 70 MeV eloctron synchrotron, tangential
to the electron orbit. In 1956, Cherenkov et al. studied
specially at Physical Institute of Acadeny of Sciences in
Moscow; also studies by Tamboulian et al. {1956).

These all show good agreement with theory. In spite of this,
one finds that guantun offects are unexpectedly important for
electron energies 2; 500 MeV, and that oﬁe cannot proceed

without consideriﬁg them. They will be the subject of the

next lectura.
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IT, QUANTUIL EBFFECTS IN SYNCEROTRON RADIATICN

1, Introduction

I% may seen strange at first sight to consider guantua
theory for electrons circulating with a macroscople radius, But
the results of these considerations have wide practical use.

We give here a strict guantum-mechanical scolution, although
with some algebraic approximations. This problem was first
undertaken hy the speaker and a student in 1953; later it was
considered by other Russian, German, and Anerican thecorists.

Onivy recently has a complete, detailed solutioﬁ been available, which

is summarized in the following.

2., Betting up of problen

Cylindrical coordinates
Ny
i ?, r= /x4y s

The electron rotates in the xy-plane

< in an orbit with radius r and
@b angular coordinate LP .
x e ) ¥ A constant {in time) uagnetié field
is applied externally, such that imn

the plane of the orbit

H =H =0 H =br 4
4 suitable vector potential for such a fleld is

- 2
A =0, * = 1/(2-q)+ d4 = /rz br ¢ e (1)




As the eguation of motion te be solved, we take the
relativistic scalar (Klain-—-Gordon) equation. The problen can also
be done for the Dirac eguation, in which casc one seesd the effects
of olectron spin. The ¥lein-Gordon equation Tor electron energy

E is
2 2 .2 2 4 U
(B" = " P" - ¢ ) \(— 0

vee(2)

=/ X

—_— —
P ~ - o/,

i

By the nmethod of separation of variables, the solution hes the form

LAY »
N N e )
hol

v 2T Jr

e (3)

;?, =0, 1, 2, ++,» = azinuthal quantono
nuribexr,

The functions u and v satiofy c¢ifferential eguations of the form

dzu

Pu el w L (ha)

it
<

vrr (Bb)

<
[
j=]

4y 4§ (zz, r, )

Equation 4(a) is solved under the harnonic spproximation
as follows: for each 2 there exists an equilibrium point r = a

L]
at wvhich £ (a,ga) = 0, This point depoends on the value of ﬁ',

o (B) = {»@__uz_al} V(2-q) )

e b (1-q)
Introduce the coordinate p=r-a {£), which characterizes the

radial betatron oscillations about the sguilibriun orbit a(ﬂ«), and

expand f(r,f/) in terms of /J H




3
e, b} = o(a, ) + p2/2 f“(a,ﬂ) e .. {6)

The anharmonic, higher terms 1n Bg.(6) are neglected. Then

2
i—;)g + (L -NpFru=o

()

Ne= -k o (a,0) = —“é-%l (1-q)%

Here A 1s positive because f% 1s intrinsically negative; and
H{a} is the uniform magnetic field that acts 6o keep the electron

in the orbit, so that
aeMHa) = f1 o (8)

Equation (7) is a standard form, for which the elgenvalues and

corresponding eigonfunctions are
o = %\(25 + 1) 8 =0, 1, 2, « « 4+ = radial quantum number

u = (;«/,n,}%r (2%s1)"F o - 3N PQHS(/X LY aei(9)

Hs = hermite polynomiail,
Equation (4b) can also be asolved in harmoniec approximation, and

one obtains a sinilar axial quantum number kX = 0. 1. 2, .,

3,  Quantum numbers

The gquantum numbers of this gystem are‘g,s,k, each rumming
over the intergers €, 1, 2, ... Ve seek to interpret these
nunbers.

The enorgy of the electron i5s B = E (g,s,k). By Ehrenfest'!s

theocrem we can assoclate with each gquantuwn number an angular

frequency
Wg =3 (@D = pw,= @D @
ms :i" (%%) = 1—q LLJJ?/ 000(10)
Wy =y G= Ja ®L



From this we can see that stable oscillations of the orbit

are possible only for

0 {qgq ¢1 cee(11)

Pirect physilcal interpretations: £/ characterizes radius of

egquilibrium orbit, Eq.(5); for 8 and k conaider

7?5 - 2 u 2 - h [ =]
jp e

sea{(12)

L2 =(/szidm= hox
e H(a) V4

Thus s and k specilfy the mean square amplitudes of radial and
axial osciliations about the equilibrium orbit. These results

could be obtained classically.

4. Radiation formula

As dn ths atomic case, the radiative transition rate Yont
depends on the quantuz numbers of the initial state n = (fs k)
and of the final state n' = (ﬁ's‘k'). We now introduce the
interaction of the eleectron with the emission field and solve the
spontancous radiation problem by assuming nc photons present
initially.

The radiation interactlon can be written

V = =-e a&u %;l (Dirac sguation)

cea{13)

(present case, P as in Eq.{2))

K = Buho

Hexrse

kﬁa“z ‘/% g /27'1:21 4] a;{, (TC‘) ei(GK.‘t - “f»“-(_h . —1-‘:)...(,”4)
v rC

where V is the normalizatien volume of a large box; and when no

photons are initially present
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a/a) (7{3) "j“! (}(‘) = J/;(,/a_ :J-_fz,, _,_}() e (15)

The formula for the radiation probability per second then

becomes
2 16 it
W, = 2L dt e nn' d3x d3x G (t, ;A - ;A) X
nn 7 R 1 2 1 2
- e (16}
.—_->
~ P P
* EE .. (ry) « 7 {x,)] &
XY )W) (T - 2 () ()
n! c 1:102 [ n
wherel{ ! = (En - En,)/hc and the Green's function is given by
6 (6,7) = 1 PR ~ikot+ il E
' B ML
y "
con (1)

= &:z(tuié)z-RE:’ LI S

The inaginary conponent is to ensure proper deviation around

poles on the real axis.

5. Applications of radiation formula

i} Rate of energy radiation by electron:

dBE
& . ‘_L; (m, - B) W, e (18)
Hore wo insert for /AN B = En' - En f

- ar gB ar

Ar= AL (55 + Aeger Dy cei(19)
and use Eqg.{10) to obtain

Fo N & (25" .v . (20)

16 nca e

o o
Here W° is the classical radiation rate, given in Lecture I. Fox

the quantun correction to be important, the electron energy muist be

on the order of 103 Bev.,




For this reason, one might at first sight suppose that quantum
effects are uninportant in synchrotron operation, This dis

contradicted in the following section.

ii) Quantun effects on [)2 ' Define for sinmplicity the

adibatic invariant §22 = P? eu{a) Ji-q = hes. Then,

as above,

2 —
diit = hc %; {(s' - &) Wont
eeof21)
_ 55 _en =\ _@2(a) ¥
48 /3 lnoaz(i—q)j/z mocz : Tmg B

The second term in Eq.{21) is the clagsilcal one, the first
is quanturm mechanical. Note the difference in sign: the
olassical term Gampens the oscillations, the gquantur tern
exxoites them. For a homogeneous field g=0, and only the
first term occurs) 1t was obtained by Solcolov and Ternov in
19535, Tha clagsical term was found by Robinson and by
Kolomensky and Lebedev. A German physicist named Gutbrod
has recently been able to obtain the second term by gquantum

methods.

iii) Experimental observation of quantum term inf? 2: by Sands

i
|
1

(gl Tech) and Korolev (Moscow) reported in the Nuove

Cimenéo 18, 1033 (1960). The latter used a 680-MeV
synchrotron with an accelerafion time of 0,6 gec. and took
moving piotures of the beam with a cauera apesd of 500 franes/

BSCC«

: =2 2
2 Phe regultant curve of‘g‘ as a
2? function of time 1s shown. The first
declining part of the curve is the

classical danping; the aecond,

- rising part is the quantun excitatlon.
0.5 sec,



iv)

Axial osecillations. The curve of 22 neasured
experimentally looks quite 1ike that for §;2 except
that the nagnltudes are somewhat smaller, Thils is
not in satisfactory agreement with theory, which
predlets that in this case tho gquantun effect should
be pmuch smaller, SO that no rising part of the curve
would bae observed. This discrepancy is not yed

explained,
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Lecbure TIL, QUASI-CLASSICAL INTERPRETATION

1., Introduction

Trn the last lecture, we obtained a formula (11,21) for the
oscillations about the egquilibrium orbit of a rotating electron.
¥or electron energles FE zl500 lieV., these oscllliations are
gubstantially excited by the guantum emisgsion of raddation and
can be on the order of centimeters in magnitude. We thus have
here a peculiar sort of macroscopic atom.

Tn the present lecture we glve a guasi-classical interpretation
of this situation. Tt is a simple means of taking the quantum
effects into account and is of importance in the design of electron
aynchrotrons for energies of order 1 Bev, or more, where it was
first introduced by Sands {Cal. Tech) . It has the practical
advantage that it can be employed in synchrotron design by persons
who are not well versed in quantum mechanics. Here we do not
consider technical details of machine design but rather general

principles.

2, Qlessical radial equation

Let a be the eguilibrdin. chiv radius for the electron,
and define P =1 - a as the parameter to characterize the betatron
oscillations about this orbit. The classical equation of motion

is

Bv yp +w2p=o Lo (1)

where the dot indicates partial differentiation with respect to

time., Here ¥ = ﬂ“_) ¥ , the classical radiation damping,
1-q B
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where B = electron energy, W = radiamtion rate, g = field index
in H = br" %, The frequency of radial betatron oscillations is
w s = J1=a B {c/a).

In this formula are no gquantum effects, and the betatron
oscillations follow the exponential decay given by putting Heo
in Eq.(II.21), when the first term of this equation vanishes.

To obtain the apeocifically qﬁantum effeots, we should introduce

an offective "quantum forse" FQ on the right hand side of Bq.(1)}.

3. The “quantum force!

We now try to devise an expression for this "quantum foroen.
The equilibrium radilus ls determined by

pe = aeH(al = ebajﬁq vee(2)

Taking ﬁ = 1, we have

BE | (1.q) (P%a) o (3)

E

Radiation of a guantum with h () = AE implies by Eq.{3) a
corresponding instantancous displacement of the cenfter of hetatron
oscillation., If the quanta are radiated at random instants tj s

the "“gquantum force! is

r = %Aa(tj) 458 (bt oo ()

where ¢ is the Dirac delta-function. {Note: if %he electron
itself received & sudden impulse, Eq.(h) would ocontain a
é'—function; but since the center of cscillation received the
sudden idmpulse instead, the derivative of the S ~function appears

in Eq.(h4}, This question 1s discussed in the Classical Theory of

Fields by Ivanenko and Solkolov),
Substituting for Aa from Eq.(B) and introducing a Fourler

decompoaition of the 5'-function, we have

e = ?: g%%?a) E%Ed/ﬂ;k ik eik(tatj) cei(5)
s
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Insertion of Bg.(%) on the right hand side of Bg.{1) leads, after
manipulations standard for linear equations, to sm expression for

the fluctuation coordinate under quantum forces,

Q. y oahw 1 “aic i oME(F5)
P ; BO-a) 27/ w52+ilcY—ic2
) el (8]
-~ ¥/, (-t )
ah to e 2 jiees W _{t=-t.}, t» ¢
5 J d
ZJE“"Q) Zo Pt Lty

where the second form applivs under the approximation Y << a%.
The dilstinction in Eq.(6) botween + tj and t ¢ tj is qulte
reasonable physically; for + ¢« tj the Jjth guantum has not yet
been emitfed and so cannot affect O ; but for + > tj the

oscilllations show the effect of previously emitted quanta.

4., Radial fluctuation

We can use the expression of Eq-(é) to compute the mean sguare

——

radial fluctuation f32 . For this purpose we assume the emission

of different guanta to be statistically independent; vigz.,

0o (7)

cos UJS(t-td) cog £ﬂs{t-tj')fucfjj'

Then

Be 2 -Vt t a2 (wlw,t,
PRepf s [rean(pt? M) ]
o )

vhere W(&),tj) ts the {elassical) expression for the intensity of

radiation per unit frequency, such that
o0 2
) _ a“ce B/ 2.4
’fo w(w,tj)dw = 2/9 _a2 ( m e ) o {9)

The integral in Eq.{8) 1s not difficult to ovaluate, and one
obtaina the same result as Eq.{IL.21) from the pure quentun thoory.
There can be little argumoent about the correctness of this eqguation, .
dther thecretically or experinentally. About the axial oscillations
there may still be some question; but they are the same in pfinciple

and rather unimportant in practilce, so wo need not discuss them
furthor.




B Discusgion of particlas vs. waves

The present example provides a convenlent starting point for
g discussion of some general principles of guantun mechanics.
Wa hope to show that the above relation of guantum and guasi-
classical formulas is not Jjust accldental.

Tn a betatron slectrons follow classical laws

o while rotating in orbit; 1f radiation was
absent, there would be no need for guantum
h® mechanicé. Tn fact, however, electrons emit
quanta hiw et unpredictable instants. Between such emissions,

they follow classical orbits.
That is, the quantum excitation of betatron oscillations ig
assoctiated with statistically independent, instamtaneous radiation

of photons. One might accordingly suggest that the electron is

a olassical entity with certain dimensiens (Rofstadter!'s oxperiments),

which oontinuously receives impulses due to radiation interaction

and exeecutes Brownian-type motion, Just as Brownlan motion permits
prediction only of statistical behavior of the particle éﬁbject to
fluctuating impulses, soc the electron motion -- especially in the
sxamples above —- must be treated statistically because of sudden

recolls from real, emitted photons.

6., Speculative comparison of macro-world and niero-—world

i} The nmacro-world. Consider the non-relativistic equation

of motion for a point electron in one dimension, examined by Drac:
% - Y% = £(t) v eo{10)
Here the olassical damping coeffiloient is
2
¥ = 2/3(° /mocs) = 2/3({Fe/c), where r = classical

. electron radius. In the absence of a driving

force, £{t} = 0, the general soluticn to Bq.(10) 1ie

x = & + Bt + Ce ¥t ves{11)



J
There must be three constants, A, B, and C because Eq.{(10) i1s of

third order; but the term Ce L represents self-acceleration and
is physilcally unreasonable, Tt nust be eliminated by a suitable
cholice of dnitial condltions, for which we suggest the following,
now becoming generally accepted:
X=X, X = v, att =0
cee{12)

X =0 at t —> o°

The last boundary condition means that all accelerations ultimately
vanigh in the infinite future, so that some sort of steady state is
approached at least asymptotically.

Under the boundary conditions {12) the solution of Bg.(10} can
bhe written (in temus of X, since this is simpler than for x itself)

*(t) =c}ft F(tt) at' + d/“wf(t')e(t_t|)/’gdt' e (13)

t

The first term of RBq,(13) would be present even for Y = O and can be
interpreted as a retarded action of the driving force ©{t) on the
eloctron, sinece in the integral the time t'4 t The second term,
however, is an advanced action, since %' >t din the integral.
It vanishes when ¥ — 0f but for Y » 0, the exponential factor
allows contributions from f over a short, advanced time interval
of order ANt =¥

Thus ohe may say that the presence of the term in ¥ (radiation
damping) causes the electron %o be "speared ocut" in time by an amount
of order AbaX, so that it is slightly susceptible to advanced
action. Another form of this interpretation is to note that an
sloctronagnetio force f(t) would prepagate a distance c[)tﬁ:(z/j)ro
during this tinej +that is, we may assign the electron (originally
assumed to be a point charge) Usmearing out" in space that corresponds
to its srmearing out in time: namely, an effective radius of order L
This smearing out in space is due to the impulaes the olectron

roceives from the radiation,




BEquation (10) and its solution (i3) are completely
classicael; nevertheless, the language of the preceding paragrapi
very closely resenbles that of the quasi-classical interpretation
of quantum effects in synchrotron radiation, which we already know
vields oxactly the same results as strict guantum theory. Ve
may thus hope %o find a nore direct conncctlon beitween classical
and quantwun theory ~- the macro-world and the nicro-world -
an exanple of such possible connections being glven in the next
section.

ii) The micro-~world, Let us write the driving force in

BEq.(10) explicitly in electromagnetic terns:

I 2 ) o . _.g'
x4+ W0 x - ¥ =eB =-_A v (1)

We have added a normal Ffrequency tern Uji X, buﬁ this dintroduces
no complications into this solution.

We decompose Ax intc a Fourier series and assume second
quantization, so that the components of this decontposition are

non-commutative, The szolution of Eg. (14} can be written
* =(/‘Ax(t')(}1(t-t')dt| o {15a)

ILdkewise, for the nmomentun »_= moi w¥rmoi + afc Ax we have

P, m/Ax(t")Gz(t-—t")dt" ‘__(151-,)

Here G:,E and G, are appropriate Green's functions.

2
How since Ax(t') and Ax(t") do not generally conmute, one

can evaluate the Heisenberg uncertalnty relation for Llhe electron,

i‘h('l-?..xzwoz) ...(16)

PyX = Xpy =
The second term on the right is an approximation for
-52¢9§ 2413 it remmins always positive and £ 1 for all Y, a%.
In the Iimit when M% — O this becomes just the usual unceritainty
relation for a particle. But here we have obtainod this result

wt from any postulates applied directly to the particle itaself,

but from the effects of guantunm fluctuations induced on the




particle by its interaction with the guantized electromagnetic
field. This is the mlero-~world analogue of synchrotron
oseillations in the macro-world.

This saime procedure has been applied by Welton to vacuum
fluetuation effects and yields the electrodynamle correction
of &/2T to the electron magnetilc monent, as well as the Lamb
shilft, etco. I% mlght be of interest to consider the struciure
and magnetic moments of the proton and neutron from this point of
view. One nmay also remark that extension of Eq.(13) to
relativistic electrons in a synchrotron leads to a treatment of
the clock paradox in relativity which has two features: the
paradox can be entirely resclved, and it is not necessary to

htroduce gravitational fields.
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IV, RADTATTION POLARIZATEON PROPTRTIES

1. Extraction of tramsverse components

For the radiation of real photons we must deal only with the
transverse conponents of the electromagnetic fileld and must
distinguish two different polarizations among these. Hence take

.
("9 =0, div A =0
Lo f1)

S
—1/0 2A

- -3
curl A , B P

These conditions assure the elimination of "sealar" and "longitudinal®
photons.
To separate the transverse conponents into twe circular

polarizations take

> >
0= -isi s = 21 cee(2)
The guantity s = i1 represents the component of photon spin along

the direction of propagationm.

The transverse, quantized field can then be written

i 5 T oF = - Ferz
T .-t %/_2_%9_& D;(Q,S)q(k's)e ickt + ik'T | c.c'] i (3)

where d, q+ are destruction and creation operators,
- + -3 .

[q(k,s), q (k‘,s')]u = >

k!’ as! oo () !

Since the photons satisfy Bose statistiecs we can define the number

3 )
N(k.s) of photons of omeomentun k and polarization s by




a*(k,o)a(k,0) = N(ik,e)

q(ﬁ,a}q+(§,s) = N(z,a) + 1 )
Tn Bg.(3) the polarimation vector is

%(i,s) = J% (% o, ié§0 % ﬁo} .ea{6)

whera &° = g/k is the unit vector in the direction of propagation,
and j@o is a unit vector in any convenient transverse direction,
Teoiﬁo = 0,

The energy in the radiation field is

o= %Sﬁifr $x(8%40?) = é%; horn (i, ) e {7)

The total angular nmomentun is

Mre "

w

- = S i -
S = ol f Ox(ma) = A4 nc% N(k,s) co o (8)

These are constants of the motion and should contain no time~dependent

conponentsa.

2,  Left—- and right- cireular polarization

The connection between the parameier & = %1 and the circular
' polarization depends upon the choice of the coerdinate system, either
right— (rhs} or left~ (ths) handed, ‘This is because the spin is an
axial vector while the propagation vector is polar. Prevalent
confusion on this point makes it worth expounding at some length,
Throughout our discussion we adopt the following convention, suitable

>
alsc for the Dirac egquation: the direction of k° is taken as the

% 2 o
z-axlis, that of A as the x-axils and
> ‘

s y(1ns) that of k°X2° for the ywaxis, This

A
o ,

ﬁ . $ definition 1s valid for both {rhs) and
. N
Q

v(rhs {1ns) coordinates.

Consider now the time dependence in Eq.(3), where

~ickt}

bx(t) ~ Re {e = cos (ckt) e (9)

-ickt}

by(t)'v Ra {ise = 5 sin({ckt) = cos(ckt-s/2)




Therefore, in either (rhs) or (lhs} coordinates

[~
H

+1 neans v =y x

v ea{10)

s = -1 leans X —F Y

Eguation (10} shows a physical meaning for s that is independent
of the coowrdinate systeri.

It is more usual, however, to talk in terms of circular
polarization, the direction of rotation of the spin as viewed by

an observer being approached head~on by the photon {(Note: this is

the opposite of the usual convention in optics, where the light bean

moves away from the viewer). This quantity i1s nct independent of

the cholece of coordinate syaten, and we have

57 = 1, sl = =1 for right circular polarilzation
ceaf11)
g% = -1, sl = 1 for left circular polarization

where the superscripts »r and 1 refer to the choice of coordinate

gysten,

From now on we shall adopt a {rhs), so that s = +1 mneana

right cireular polarvization, s = -1 neans left circular polarization.

3. Idnear pelarization

Tt is also possible to express the transverse polarization in

terns of two orthogonal linear polarigaticns. For this purpose

we would decompose the vector potential as follows:

—'é; = :’:t + -é
2 3
- %
2, = Foay Ay = (K% p%)a, rea(12)
-5
B = (N°V s

._.)
where Jo 18 any convenient unit vector in the systenm under

consideration. The radiation intengity for each type of

polarization is expressed in terms of the creation and destruction

operators.

:
;
i



3 +
Wy, ~age,t Vg v Qglg cee(13)

If there are no photons originally present, the ereation and

destruction operators satisfy

29,7 = aqa57 = 1, qagt = agat =0 co (1)

Transformation between the two systens of pelarization
(Lineer end ciroular) is made awkward by the existence of a phase
difference hetween the two components, which cannot be gilven by
the quantwn mechanical forrmlae, ‘Fo speeify this phase difference
is essentially a classical problen, for which we have recormended
the followlng solution. The total enorgy radilated is of course the
same in either polarization systen:

W= J2+W3 = W+ e (15)

where W;1 refer to circular polarizatilon. Thus there are only
threo independent duantities among the four Wn 1 and since the

suns are constant, one expects that the differences will be related

to the phases. In particular, it dis found that
c V_ =Y
sin © = — vea(16)

23 2(w2w3)i

where <523 is the phase diffoerence between the %two linearly
polarized components. A gorresponding formula oxists for the
phase difference between circular pelarizations. The advantage

of these formulas is that {the phase difforence can be swaluated
directly from the {real) intensities W_» for which quantun and

classical exproesasions are lomediately available.

4, Application to svnchrotron radiation

The photon in cnitted in a narrow cone

almost tangential $o the orbit; this dis
2o -3

the direction k-, For JO we talte

the dircction of the applied magnetic

field H, perpendicular te the eloctrom




orbilt. The electric vectors of the

two linear polarizations avre

_} -3

By o~ koxj; , pointing approximately toward the center of the orbit,
-3 =5
and Eﬂ, deo parallel to H.

Now write Schott!s forrmla with pelarization,

’ 2p2 . ’ ' ”
Wy (,e) = P—-i-z—glf- [82,85;(1?/)’ gin@) - 8. cot © Jv('\?,ﬂsine)]“

{17
where °7 is the harmonic number and 8 the polar angle between
'1"{0 and _50-
For the {{~component, By = 1, 33 = 0,
W, (v,8) = %—‘73— J{}? (VB sind) ...(18a)
end for the T -component, s, = 0, 8q = 1,
W (1,9) = f—’i’iz-ﬁﬁ cot?03% (V' fisine) ... (18b)
a

The suwa of Eqs.(lBa) and (18b) is sguivalent to Eq.(I,?) for the
total radiation intensity.

For right or left circular polarization (s = i1), we put
8, = ; sq = 1//Z in Ba.{17). We can then compute the phase

difference of the (¢~ and 7} ~conponents accordlng to Eq.(16); via.,

N coa8.
= .+ (19)
A ‘COSG\

This neans that if 0 4 0< /2, sin8 = 1, and the raditation is
left elliptically polerlzed; if 'FVZéL8:§7T, sin® = -1, and the
radiation is right elliptically polarized. When e = /2, the
observer is in the plane of the orbit, and the radiation is
linearly polarized with Wﬁ.= 0.

If we integrate over all angles and frequenciles,

Uy o= (7/8)w , Vo = {(1/8)u o (20)




s0 that most of the radiation is in fact & -polarized (ECT in tho

plans of the orbit).

S Expexrinental checlc

oreolev first tested these polarization formulae
oxperimentally on a 250 HeV, electron synchrotron, He checked
and Wy (v, 0)
the angular dependence of Ekr(1%6 p Tor a fixed 2 or hence fixed
wavelength of radiation, which was 40808  for the spectrograph
concerned., The spectrograph was fitted to distinguish ¢ -~ froo
M-=polarization, The theoretical curves were conpubed by using

the asyuptetic forn (I.11) for J x). The theoretical curve

»
and experinental points were in very good agreement.

Vi r
//““\ Fan
Fer ¥ :j\\ 3
3ot 90° 300 )

Later, this experinent was repeated independently at
Cornell, with similar confirmation of the theorv. Welther scit
of experiments was able to determine the relative phase of

the ¢ and T components, il.e., the degree of elliptical polarization.
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Lecture W, RFLECTRON POLARTIZATION PROPERTTIES

i, Dirac eguations

The free-particle Hamiltondan due to Dirac is
--’ 2
H =10 P1(€T'5§+ PBHOC cee{1)

Note: For conaiderztion of spin effects, it 1s more convenient
to use the Dirac matrices fﬂﬂ 5? than the fully covariant @;&
introduced by Pauli.

In the following, Greek indilces run from 1 to 4, Latin
indices from 1 to 3. With the help of the WXL identity matwix

I, we can define

//Oal: (pn:I), %“' (Jn’I) "'{2)

All of the 16 possible Dirac operators can be represented as

simple produects of one P and one <  viz.,
s =
St Pyoum Py
-3
Vi p1cr, ,040‘!‘ = T
= -
T pso, P oo e (3)
i -~
At pPRo = v Py Ty = P1
PropPad), = Py
where 8, V, T, A, P stand for scalar, vechtor, temscor, axial vector
and pseudoscalar, respectively.
A difficulty with the Dirac Haniltonian (1) is that Lt

_>
does not admit the spin ¢ as a conatant of nodion, but only the

total angular nonentun




S -
J = Txp + Hho

vee ()

Il = o

Ve wish to generalize tho spin operator in the following
way: The generalized operator should not contain any orbital
angular nomentum, should commuite with H +teo the maxinun possible
oextent, and should behave simply under Lorentz transformations and
spatial rotatlon. We discuss sthree such generalizations:

i) generalization of the pseudovector Aj;

ii) generalization of the nagnetic nmonent part of T

114} intrvoduction of a unlt spin vector with peculiar
Lorentz transformation properties, such that it
naintains 3-dimensionality (vanishing fourth

oomponent) in all Lorentz frames.

2. Generaligation of A.

-
The pseudovector is = (o, P1), in terms of which
define

sﬂl‘,,:%d/(_ Pyt PO, ] coe(5)

vhere Pv is the generalized sonentusn as defined in Eq.(IT,2).

Then the generalizod operator is

S =8 = 1 (e P)ay + 0 (H;-e(?)j e a(6)

It 18 clear that Xff/bz (/qu}c '{P"’S/a,llf =(/ cijx IV"!'S/%u'q." transforns

as a Lerentz pseudovector.

For a freo particle the components are

{7

=

quﬁ.p
which are all constants of notion (commute with H); in the
presence of interactions, only scme of the corresponding

compenents will connuite with H.




3. Generalization of T

The tensor is(\(/&.t) = "0‘1\';/@ o PSO’, !025 ; as before,

define

Fup) = %@%&L7PA + P%C{jLWﬁ .o (8)

Buvt Byt = Fo {(B-eflan v qy (ot

Then -cﬁ/-b\?z‘./f‘ ax lf.'+1‘|‘fébv \_k." =Id3x ?P+ E;va L uf behaves like an
antisyrmetric, second-rank tensor under Lorentz transformations.
As before, for a free particle the conponents of Fﬂwlgcomuute
with H; but in the presence of interactions, only some components
are constants of the motion -~ for example, the component of the

nmagnetic nomon% parallel to an external nagnetic field.

}, Unit spin vector

This conocept is proving quite useful, although it exists only

for the free-particle cage. In terms of the S/babove, define

22w 2 2 2 e (9
e {2l p Op” - p(d .p) (9)
3 2
P P
where the second form results from substituting the free-particle
relations of Eq.{7}. This vector is a peculiar mixture of the
axial vector with the magnetic moment part of the tensor operator,

-
Fhe normalization of the unit vecter u is the satte as that of

-,..&

¢+ nanely,

= 3 .ol {10)
Tn order to see tlas more clearly, we may introduce a "matural"

systen of rectangular coordinates, in which the 3-axis is chosen

along the direction or _ﬁ Then




é? >
- = L P
vy = Oy p

L)
u1, 112 = PB U—?a pjfrz

5. Electron wave function

The Dirac eguation for the notion of a free electron is

(iil“a/bt;ﬁ)ly =0 o {12)

with H as in Eq.(1). The wave function ly has four components:

a two-Told distinctlion with respect to sign of energy and a two-fold
distinction with respect to (arbitrary) spin direction,

We employ a supplenentary condition

(QLLB)IP = sjf, s = 1 e (13)

This operator cormutes with H and so dis a consatant of the notion;
its eigenvalues a = ;1 dencte apposite circular pelarizations
gbout the axils of the propagation vector, Just as in the photon
case. That is,

s = -8 = 1 wright heliocify

v {14)

s’ = —sl = -1 left helicity

Eguation (14) is the exact analogue of Eq.{IV,11) except that the
word *helieity! is used for electrons instead of Yecircular

polarization". In analogy with Eq.(IV,9) we have
pggzwz ispsa'?\},f e (15)

& Pourler expansion of 1V is written

pU

- >
1\{: V— }"_] CSbS e“iOE“l{t i ker + C.C» pll(16)

k2]



5
whaere V 1s the volume of a large box, bs is a four-conponent unit
gpinor, apd CS,C: are destructlon and creation operators,

Here ¢ = a specifies the sign of the energy; for the study
of apin effects 1t ds sufficlent to ftake € = +1, We fale the
nornalization of Eq.(16) apporopriate to a single electron 1n an

indefinite state of polarization,

Ily+1!,)d3x=c’1'c1+cf1 C_q =1 o (17)

-
6. Trangfommation properties of wu

.
The behavior of uw under Lorentz tranaformation is sicst

readily studled by use of Egs.{16) and (17). Consider the
quantities
_ A 3. .t +
U1~fIVu11deuC1C_.?+C_1 c,
e (18)
_ + 3, _ + et
Uz“/‘f’ up Y @k = 4056y = 04 0_y)
3 + +
~ + jd7x = 8, G, -~ C_,C_
Ug_flp u, 1 %1 %1
They satisfy the sane normalization as tho uj, naiiely
2 S
Uj=1’ V.U=3 e {19)

The quantities,zﬂu following Eq.(é) can be expresded in

texins of the Uj

J3=OJU3,;J1'2=}{_U1'2‘ of = K e (20)

whexre }( = mcc/h, k o= p/h, = E/ho' Likewise, we can express

the nmagnetic morient parts of Eghl? following Eq.(8),

/fcj = KUB, ,((1'2 = WUy , vee(21)




Now we see how it is that polarization properties for ultra-
relativistic electrons must bhe considered in terms of ?; or by a
peculiar nixture of 2 and /.,Z\: when &3 22 /(, the longitudinal
coemponent ,JB dominates over ,ef_l angd x‘ﬁpz, wvitile the doninant
transverse components are /51,/42.

The Lorentz transfermation of {; can be obtained from the
known pseudovecter and tensor transfornation laws for Ja and
95,4,1; y plus the relations in Eqs.(?.f)) and (21); or the
transformations may be deternined directly from the definition in

Eq.(9). This is particularly sinple when one uses the '"natural

coordinate systen.

o0
o Suppose an unprimed system with the
/___ s x! elecfron momentun vector “15> Iyving in
ﬁ1,[ the xz-planec and naking an angle €
with the z-axis; let B = k/éo = pc/E.
-
-3 Let the primed coordinate syston move
9/7‘2- in the z-~direction with a velocity
> x vy E e ﬁ1. In the unprined systen,
the "natural" ccordinates for o are such that Uj ig along the
direction of 5; define U2 to be 1n the y-direction, and U1
to De perpendicular to both U, and U,. In exactly the same way

2 3
1 At
for the prined coordinate system, UB ia along the direction of p ,

] ] I t
U2 is in the y ~direction, and U1 is perpendicular to U2 and UB.

Then it follcows that

U, = U «va(22a)

gince these coumponents remain perpendicular to the motion, while

1
the transfornation of U3 aned U1 is deternined by ";—-—5-_5 ;

viz.,

U, cos ¥+ U, sin ¥

3 3

o
1

.
oo {22b)

o
it

U, cos ¥ - U, Bin ¥

1 1 3

c0s¥ = (5, - fosse)/ [(B, poose)® v (1 -p2 % sunle] F




. .
Herg }’is the angle between p! and the gzl-axis. Of course the
transformation is uwnitary,

5

-3 —_
LUt = ULU = 3 vea(23)

]

)

a Applications 3 non-conservation of parlty

By moeans of these formulae one can caloulate spin effects in
many phenonena: e,g., spin properties in elastic scattering at
variouslenergies, brensstrahlung of polarilzed electfona, spin
effecta in synohrotron radiation. In the last nentioned case, the

net effect is for synchrotron radlation to leave the electrons

—
. polarised in a direction oppesed to the applied field H. e have

calculated that the electrons would be 90% polarized 1f they could
run in a 1 Bev. synchrotren continucusly for 1 Lour. This has

not yet proved possible in practice, but storage rings such as those
developed at Prascati may make such observations possible, At
present there are no expericental data on electron polarization

in synochrotromns.

As a final application of spin considerations for the Dirac
eguation, I should like to consider fallure of parity consexrvation,
as introduced by Lee and Yang, and in particular the fSheory of the
four~component neutfino as developed by myself and collaborators.

If in the Dirac equation we set g é 0, there are two possibilities:

i) The two-component neutrine (Lee-Yang, Landau, etc.),

with the equation
1

St
fE~ca".§}\y =0 v (20)
- ' ' ot
where ¢§ is the two-component Pauli spin operator, and ty has
]
only two cemponents, Thus 1¥ has one helicity for B YO, the
oppesite helicity whem E<0; in pracitice, the neutrinoe has left

helicity, the anti-neutrino has right helieity,

ii) The four-corponent neutrine (4.4, Sokolov et al,) has

the equation

{E- pi&.pﬁfly:o oo {25)




on which we can 3mpose the cupplementary condition of Eq. (13);

note that this condition is a Lerentz invariant for the special

cape m = 0. How for both cases T >0 and E {0 we have two
helicities, Thus there are four solutlons :
{8y , U(r) (as for 2-component case) . .. (26a)
i) . -\;;( £}  (ogually good solution) v (260)

With the recent experimental discovery that the eleciron and
smon neutrinocs are different, wo find a case for both solutions in
Eq.(20), taking (26a) to refer to 17 and (26b) to wefer to V4

Then we have the consistent scheme

ieptons: e , /Q,+ f 'V‘e(/ev') » ‘1%‘:(1")
, e {27)
anti-leptons; et ' /aj. 'l’:;e(r) ’ ‘D/L(f@)

Now sirple conservation of leptons nicely a;.roids such unobserved
reoactlong as H—> e £ ¥ Of course one nust understand that
At -deoay ds 4 —%e' 4 '[}e(r) + "\?m(,ﬁ) instead of

AT — e 4 e 12, sto.

Finally, we should adnit that this is not the only possible
explanation of the known phenonena; but it ls a point of view
dveloped For some tine by nyself and my associates, and it seens
worth presenting mow because it fits in so well with the ohserved

distinction between ’VB and ‘j)/a.




