

Overview

The ALMA Partnership

• ALMA is a <u>global</u> partnership:

- North America (US, Canada; Taiwan in process)
- Europe (via ESO with Spain)
- Japan (now including Taiwan)
- 50:50 partnership between NA & Europe + closely-coordinated but separate effort by Japan (Enhanced ALMA)

• Key Science Goals:

- Image protoplanetary disks:
 - physical, chemical, magnetic field structure
 - detect tidal gaps created by planets undergoing formation in the disks
- Image starburst galaxies as early as z = 10
- Image normal galaxies like the Milky Way out to z = 3
- Site: Llano de Chajnantor of Altiplano: 16500' above sea level
- Will operate as single Observatory with scientific access via regional centers

Science Goals: Imaging Protoplanetary Disks I

- Protoplanetary disk at 140pc:
 - Model of Jupiter mass planet at 5AU

- ALMA simulation
 - 428GHz, bandwidth 8GHz
 - total integration time: 4h
 - max. baseline: 10km

NSF Director's Review

Science Goals: Imaging Protoplanetary Disks II

M _{planet} / M _{star} = 1.0M _{Jup} / 0.5 M _{sun} Orbital radius: 5 AU Disk mass as in the circumstellar disk as around the Butterfly Star in Taurus	, ,	Maximum baseline: 10km, t _{int} =8h, 30deg phase noise pointing eror 0.6" Tsys = 1200K (333M) / 220K (870M)	
Sebastian Wolf (2005) L = 333MM		L = 870mm	
50 pc 1	00 pc	50	pc

Science Goals: Extragalactic Astronomy

Galaxies z<1.5 alaxies

HDF redone:

- Comparable
 resolution
- Much deeper

HDF 🛛

What Is ALMA?

• ALMA is an <u>interferometer:</u>

- 50 12m antennas (bilateral project)
- Japan's Compact Array: 4 x 12m + 12 x 7m antennas
- Baselines from 15m to 15km
- Sensitive, precision imaging between 30 and 950 GHz
 - Receivers for each atmospheric "window"
 - First light system has 6 bands:
 - 100, 230, 345 and 650GHz
 - Japan 140, 460 and 900GHz
- 10-100 times more sensitive and 10-100 times better angular resolution compared to current mm/submm telescopes

Frequency Coverage

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Rebaselined Cost and Schedule: Overview

- Total Cost
 - Original: ~ \$689M (European contribution very approximate)
 - Rebaselined: ~\$1033M (No adjustment for Japan, €)
- NA Cost
 - Original: \$344.2M
 - Rebaselined: \$477.68M (+ additional contingency, less Taiwan)

• Schedule:

- Original Completion: 2011
- Rebaselined Completion: 2012
- Cost Containment Efforts:
 - Scope reduction: Decrease N_{ANT} from original 64
 - New Partner: Taiwan

Metrics:

- Point-Source Sensitivity: N*D² (collecting area)
- Imaging Speed: N*(N-1)/2 (number of baselines)
- Image Fidelity: N*D (mosaics)

Notes:

- Does not account for improved antenna performance relative to surface rms specification
- Does not account for improved receiver performance relative to system temperature specifications
- Impact → ALMA performance relative to existing arrays is better than indicated

Importance of trade-offs in efficiency vs number of antennas:

<u>Example:</u> At N ~1 THz, surface improvement of $30 \rightarrow 25$ Mm is equivalent to having 50% more antennas

Descopes: Relative Performance -II

Timeline

Timeline – I

- 1990: NRAO/AUI submits proposal to NSF for Millimeter Array
- 1991: MMA proposal reviewed
- **1994:** NSB approves MMA Project Development Plan (November)
- **1998:** MMA Design and Development funding begins (May)
- **1999**: Phase I international agreement signed (June)
- **1999**: review of US reference design of MMA (July)
- **2000**: ESO Phase I funding begins
- 2000: US-Canada Letter of Intent to collaborate
- **2002:** US Construction begins (May)
- 2003: ESO Construction funding begins (January)
- **2003**: ALMA Agreement signed by NSF and ESO (February)
- 2003: Massimo Tarenghi becomes ALMA Director(April)
- 2003: US and Canada sign NSF-NRC MoU (June)
- 2003: ALMA site groundbreaking (November)

Timeline – II

- **2003**: production antenna RfP/CfT issued (December)
- **2004:** initial report on technical evaluation of ALMA prototype antennas (June)
- 2004: production antenna bids opened by AUI and ESO (June)
- **2004:** Vertex carries out uncontrolled adjustments and tests of prototype (summer)
- 2004: production antenna bid review and reconciliation between AUI & ESO begin (July)
- 2004: AUI presents draft bid package to purchase Vertex antenna to NSF (August)
- 2004: ALMA Project Engineer and Project Manager join JAO (late summer)
- **2004:** ALMA-NINS MoU with Japan signed (September)
- **2004:** potential problem with ALMA prototype antennas brought to Board, NSF(October)

Timeline – III

- 2004: NSF suspends AUI antenna procurement approval process (October)
- **2004:** additional prototype testing program mandated, assigned to ALMA PM (November)
- **2004:** Chile agreements finalized (December)
- 2004: ALMA rebaselining begins (December)
- **2005:** Follow-up testing of prototypes complete, antennas found compliant (April)
- **2005:** AUI finalizes bid package (April)
- 2005: ESO Finance Committee declines to recommend purchase of Vertex antennas (May)
- **2005:** ESO Council declines to approve purchase of antennas w/o review of new construction budget (June)
- 2005: ESO Council encourages NSF to allow AUI to purchase antennas first (June)

Timeline – IV

- **2005:** ALMA Board approves proposed AUI Vertex contract (June)
- **2005:** AUI antenna contract signed (July)
- **2005:** Project rebaselining completed and distributed to ALMA Board by JAO (September)
- **2005:** ESO receives drastically lowered antenna bid from AEM; moves toward purchase (September)
- **2005:** Garmisch review of new baseline by Beckwith Committee (October)
- 2005: ALMA Board begins reform process (November)
- **2005:** ALMA Board approves proposed ESO antenna contract (December)
- 2005: ESO Council and Finance Committee approve AEM antenna contract (December)
- **2005:** ESO signs antenna contract (December)
- **2005:** ESO signs antenna transporter contract (December)
- 2006: Review of "delta" costs associated with two antenna decision (January)
- **2006:** Review of new NA baseline by Hartill committee (February)
- 2006: Director's Review (March)

Interferometry

Angular Resolution

- $\alpha \sim (\lambda / D)$ (smaller is better)
- Hubble Space Telescope:
 - α ~ 0.1 arcseconds at 5000Å
- Green Bank Telescope:

100m antenna at λ = 21 cm, α ~ 0.1 <u>degrees</u> <u>Single dish sizes limited by materials</u>

• \rightarrow Interferometers (Arrays): $\alpha \sim (\lambda / \underline{\text{separation}})$

Antennas needed for collecting area Computers essential Complex optimization 35 km separation at $\lambda = 21$ cm, $\alpha \sim 1$ arcsecond

• ALMA

At 15 km separation, λ =0.35mm, α ~ 0.01 <u>arcsecond</u>

Optical and Radio Telescopes

- Angular resolution: $\alpha \sim (\lambda / D)$ (smaller is better)
- Optical Telescopes:
 - Geometric optics
 - Focal plane large
 - Angular resolution ("detail") limited by atmospheric distortion, not diffraction (except for HST and AO systems)
 - Field diameter/Resolution ~ 5000
- Radio Telescopes:
 - Physical optics
 - Small focal plane (single on-axis pixel spot is typical)
 - Angular resolution determined by physical size of antenna
 - Field diameter/Resolution < a few
 - Resolution limited by physical limitations of structures...<u>BUT</u>

Interferometry - I

- Resolution $\propto \lambda/D$
 - 5 cm/100m = 2 arc-minutes (GBT)
- Use an array of smaller telescopes to make much larger 'virtual' telescope
- Maximum distance between antennas determines resolution
- *e.g.*, VLA = 22-mile diameter radio telescope

- 5 cm/22 miles = 0.3 arc-<u>second</u>

Interferometry – II

- Each pair of outputs of the antennas in an interferometric array must be multiplied in strict phase
- This is done with a specialized computer ("correlator")
- <u>Example</u>: In the 2-antenna interferometer, one measures <E₁E₂>, the 2-point correlation of the full (amplitude <u>and phase</u>) signal across the wave-front of the radiation from the source

BASIC LINKED RADIO INTERFEROMETER

 $< E_1 E_2 >$

Interferometry – III Caveats

- All interferometric images are reconstructed estimates of the image one would have seen had one mapped the field with a filled-aperture telescope
- Because the aperture of an interferometer is not filled:
 - the edges of the individual antennas produce diffraction artefacts in the images which must be corrected for (next slide)
 - the total intensity level of any reconstructed image is totally unknown unless it is separately measured, i.e., uniform or slowly varying brightness components across the field are "resolved out"
 - for regions of the sky larger than λ / D, special mosaic techniques must be used to estimate and restore the resolved-out intensities
 - this will be the case for most Galactic sources and some extragalactic ones
 - the ALMA Compact Array is designed specially to assist with this

Raw "dirty" map

Χλεαν μαπ

Σελφ-χαλιβρατεδ

Image Processing

Discards

ALMA - II

- ALMA began in the U.S. as the Millimeter Array
 - Proposed by AUI/NRAO in 1990
 - Design and Development (D&D) funding began in FY 1998
 - Original scope 40 8m antennas, no submillimeter
 - International partnership required before Construction would be approved by NSB
 - FY 2002 initially proposed as 5th year of D&D, but Congress mandated start of construction in early 2002

D&D partnership with Europe

- Parallel, closely coordinated R&D programs
- Collaboration with Japan active (though not a formal partner)
- Scope began to evolve: scientific advances (protogalaxies at high redshift), accomodation to slightly different regional scientific interests: More flexible and capable instrument.
- Bilateral scope: 64 12m antennas, 4 receiver bands into submillimeter

ALMA - III

- ALMA Construction and Operations Partnership
 - ALMA Agreement (binding international agreement)
 - NSF (with Canada) + ESO (with Spain)
 - Signed February 2003, beginning construction project
 - Cost \$552.4M (Y2k)
 - Deliverables not expended cash define parity in partnership
- Japan

—

ALMA - IV

- Chile is ALMA Host Country
 - 10% of observing time
 - No capital contributions
- Site near San Pedro de Atacama
 - Altiplano of Andes:
 - Sub-millimeter capability requires arid and high (5050 m, ~16,500 ft.) site for atmospheric transparency
 - Long-baseline interferometry requires flat site 15-20km across
 - Llano de Chajnantor -- near international highway
- Site work is challenging:
 - Altitude
 - Chilean economy is booming
 - Other \Rightarrow

Backups

NSF Director's Review

Array Separations Are Usually Adjustable – Like a Zoom Lens...

Maximum Detail At <u>Largest</u> Antenna Separations...

