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Overview
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The ALMA Partnership

• ALMA is a global partnership:
– North America (US, Canada; Taiwan in process)
– Europe (via ESO with Spain)
– Japan (now including Taiwan)
– 50:50 partnership between NA & Europe + closely-coordinated but 

separate effort  by Japan (Enhanced ALMA)
• Key Science Goals:

– Image protoplanetary disks: 
• physical, chemical, magnetic field structure
• detect tidal gaps created by planets undergoing formation in the disks

– Image starburst galaxies as early as z = 10 
– Image normal galaxies like the Milky Way out to z = 3 

• Site: Llano de Chajnantor of Altiplano:  16500’ above sea level
• Will operate as single Observatory with scientific access via 

regional centers
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• Protoplanetary disk at 140pc:
– Model of Jupiter mass planet at 

5AU

• ALMA simulation
– 428GHz, bandwidth 8GHz
– total integration time: 4h
– max. baseline: 10km

Wolf, Gueth, Henning, 
& Kley 2002, ApJ 566, 
L97

Science Goals:                        
Imaging Protoplanetary Disks I
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l = 333mm l = 870mm

Mplanet / Mstar =   1.0MJup / 0.5 Msun

Orbital radius:   5 AU

Disk mass as in the circumstellar disk 
as around the Butterfly Star in Taurus

Maximum baseline: 10km,

tint=8h,               

30deg phase noise

pointing eror 0.6“

Tsys = 1200K (333m) / 220K 
(870m)

Sebastian Wolf (2005)

50 pc 50 pc100 pc

Science Goals:                        
Imaging Protoplanetary Disks II
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Science Goals: Extragalactic Astronomy

HDF redone:
• Comparable 

resolution
• Much deeper

ALMA 

HDF 
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What Is ALMA?

• ALMA is an interferometer:
– 50 12m antennas (bilateral project) 
– Japan’s Compact Array: 4 x 12m +  12 x 7m antennas 

• Baselines from 15m to 15km
• Sensitive, precision imaging between 30 and 950 GHz

– Receivers for each atmospheric “window”
– First light system has 6 bands: 

• 100, 230, 345 and 650GHz 
• Japan 140, 460 and 900GHz 

• 10-100 times more sensitive and 10-100 times better angular 
resolution compared to current mm/submm telescopes
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Where is ALMA?

El llano de Chajnantor

ΑΛΜΑ
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Frequency Coverage

Note:  Band 1 (31.3-45 GHz) is off-scale to left

1
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12-m array

ACA

Enhanced ALMA

AOS Technical Bldg
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Rebaselined Cost and Schedule: 
Overview

• Total Cost
– Original: ~ $689M (European contribution very approximate)
– Rebaselined: ~$1033M (No adjustment for Japan, €)

• NA Cost
– Original: $344.2M
– Rebaselined:  $ 477.68M (+ additional contingency, less Taiwan)

• Schedule:
– Original Completion: 2011
– Rebaselined Completion: 2012

• Cost Containment Efforts:
– Scope reduction: Decrease NANT from original 64
– New Partner: Taiwan
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Descopes: Relative Performance –I 

Metrics:

• Point-Source Sensitivity: N*D2 (collecting area)
• Imaging Speed: N*(N-1)/2 (number of baselines)
• Image Fidelity: N*D (mosaics)

Notes:
– Does not account for improved antenna performance relative to 

surface rms specification
– Does not account for improved receiver performance relative to 

system temperature specifications
– Impact  ALMA performance relative to existing arrays is better 

than indicated
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Ruze equation
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Importance of trade-offs in efficiency vs number of antennas:

Example: At n ~1 THz, surface improvement of 30→25 mm is equivalent to 
having 50% more antennas
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Descopes: Relative Performance –II 

ALMA and Possible Descopes vs. Existing Arrays: Relative Performance
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Timeline
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Timeline – I 

• 1990: NRAO/AUI submits proposal to NSF for Millimeter Array
• 1991: MMA proposal reviewed
• 1994: NSB approves MMA Project Development Plan (November) 
• 1998: MMA Design and Development funding begins (May)
• 1999: Phase I international agreement signed (June)
• 1999: review of US reference design of MMA (July)
• 2000: ESO Phase I funding begins 
• 2000: US-Canada Letter of Intent to collaborate
• 2002: US Construction begins (May)
• 2003: ESO Construction funding begins (January)
• 2003: ALMA Agreement signed by NSF and ESO (February)
• 2003: Massimo Tarenghi becomes ALMA Director(April)
• 2003: US and Canada sign NSF-NRC MoU (June)
• 2003: ALMA site groundbreaking (November)
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Timeline – II 

• 2003: production antenna RfP/CfT issued (December)
• 2004: initial report on technical evaluation of ALMA prototype 

antennas (June)
• 2004: production antenna bids opened by AUI and ESO (June)
• 2004: Vertex carries out uncontrolled adjustments and tests of 

prototype (summer)
• 2004: production antenna bid review and reconciliation between 

AUI & ESO begin (July)
• 2004: AUI presents draft bid package to purchase Vertex 

antenna to NSF (August)
• 2004: ALMA Project Engineer and Project Manager join JAO 

(late summer)
• 2004: ALMA-NINS MoU with Japan signed (September)
• 2004: potential problem with ALMA prototype antennas brought 

to Board, NSF(October)
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Timeline – III 

• 2004: NSF suspends AUI antenna procurement approval 
process (October)

• 2004: additional prototype testing program mandated, 
assigned to ALMA PM (November)

• 2004: Chile agreements finalized (December)
• 2004: ALMA rebaselining begins (December)
• 2005: Follow-up testing of prototypes complete, antennas 

found compliant (April) 
• 2005: AUI finalizes bid package (April)
• 2005: ESO Finance Committee declines to recommend 

purchase of Vertex antennas (May)
• 2005: ESO Council declines to approve purchase of 

antennas w/o review of new construction budget (June)
• 2005: ESO Council encourages NSF to allow AUI to 

purchase antennas first (June)
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Timeline – IV

• 2005: ALMA Board approves proposed AUI Vertex contract (June)
• 2005: AUI antenna contract signed (July)
• 2005: Project rebaselining completed and distributed to ALMA Board by 

JAO (September)
• 2005: ESO receives drastically lowered antenna bid from AEM; moves 

toward purchase (September) 
• 2005: Garmisch review of new baseline by Beckwith Committee (October)
• 2005: ALMA Board begins reform process (November) 
• 2005: ALMA Board approves proposed ESO antenna contract (December)
• 2005: ESO Council and Finance Committee approve AEM  antenna 

contract (December)
• 2005: ESO signs antenna contract (December)
• 2005: ESO signs antenna transporter contract (December)
• 2006: Review of “delta” costs associated with two antenna decision 

(January)
• 2006: Review of new NA baseline by Hartill committee (February)
• 2006: Director’s Review (March)
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Interferometry
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• α ~ (λ / D) (smaller is better)

• Hubble Space Telescope: 
α ~ 0.1 arcseconds at 5000Å

• Green Bank Telescope:
100m antenna at λ = 21 cm,  α ~ 0.1 degrees
Single dish sizes limited by materials

•  Interferometers (Arrays): α ~ (λ / separation)
Antennas needed for collecting area
Computers essential
Complex optimization
35 km separation at λ = 21 cm, α ~ 1 arcsecond

• ALMA
At 15 km separation, λ =0.35mm, α ~ 0.01 arcsecond

Angular Resolution
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Optical and Radio Telescopes

• Angular resolution: α ~ (λ / D) (smaller is better)

• Optical Telescopes:
– Geometric optics
– Focal plane large
– Angular resolution (“detail”) limited by atmospheric distortion, 

not diffraction (except for HST and AO systems)
– Field diameter/Resolution ~ 5000

• Radio Telescopes:
– Physical optics
– Small focal plane (single on-axis pixel spot is typical)
– Angular resolution determined by physical size of antenna
– Field diameter/Resolution < a few
– Resolution limited by physical limitations of structures…BUT
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Interferometry - I

• Resolution ∝ λ/D
– 5 cm/100m = 2 arc-minutes (GBT)

• Use an array of smaller telescopes to 
make much larger 'virtual' telescope

• Maximum distance between 
antennas determines resolution

• e.g., VLA = 22-mile diameter radio 
telescope
– 5 cm/22 miles = 0.3 arc-second

D
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Interferometry – II

• Each pair of outputs of the 
antennas in an 
interferometric array must 
be multiplied in strict phase

• This is done with a 
specialized computer 
(“correlator”)

• Example: In the 2-antenna 
interferometer, one 
measures  <E1E2>, the 2-
point correlation of the full 
(amplitude and phase) 
signal across the wave-
front of the radiation from 
the source

<E1E2>
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Interferometry – III 
Caveats

• All interferometric images are reconstructed estimates of the 
image one would have seen had one mapped the field with a 
filled-aperture telescope

• Because the aperture of an interferometer is not filled:
– the edges of  the individual antennas produce diffraction artefacts in 

the images which must be corrected for (next slide)
– the total intensity level of any reconstructed image is totally 

unknown unless it is separately measured, i.e., uniform or slowly 
varying brightness components across the field are “resolved out”

– for regions of the sky larger than λ / D, special mosaic techniques 
must be used to estimate and restore the resolved-out intensities

– this will be the case for most Galactic sources and some 
extragalactic ones

– the ALMA Compact Array is designed specially to assist with this
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Image Processing

Raw “dirty” map

Χλεαν µαπ

Σελφ−χαλιβρατεδ
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Discards
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ALMA - II

• ALMA began in the U.S. as the Millimeter Array
– Proposed by AUI/NRAO in 1990
– Design and Development (D&D) funding began in FY 1998
– Original scope 40 8m antennas,  no submillimeter
– International partnership required before Construction would be 

approved by NSB
– FY 2002 initially proposed as 5th year of D&D, but Congress 

mandated start of construction in early 2002

• D&D partnership with Europe
– Parallel, closely coordinated R&D programs
– Collaboration with Japan active (though not a formal partner)
– Scope began to evolve: scientific advances (protogalaxies at high 

redshift), accomodation to slightly different regional scientific 
interests: More flexible and capable instrument.

– Bilateral scope: 64 12m antennas, 4 receiver bands into 
submillimeter
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ALMA - III

• ALMA Construction and Operations Partnership
– ALMA Agreement (binding international agreement)
– NSF (with Canada) + ESO (with Spain)
– Signed February 2003, beginning construction project
– Cost $552.4M (Y2k)
– Deliverables not expended cash define parity in partnership

• Japan
–
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ALMA - IV

• Chile is ALMA Host Country
– 10% of observing time
– No capital contributions

• Site near San Pedro de Atacama
– Altiplano of Andes:
– Sub-millimeter capability requires                                                            

arid and high (5050 m, ~16,500 ft.)                                                           
site for atmospheric transparency

– Long-baseline interferometry requires                                                       
flat site 15-20km across

– Llano de Chajnantor -- near                                                
international highway

• Site work is challenging:
– Altitude
– Chilean economy is booming
– Other ⇒
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Backups
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mm and sub-mm Telescopes
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Antenna Key Features
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Array Separations Are Usually Adjustable 
– Like a Zoom Lens...



March 2, 2006 NSF Director’s Review 34

Maximum Detail At Largest Antenna 
Separations...
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