THE MILWAUKEE JOURNAL

Sunday, Nove nber 22, 1959

LIKE giant steel mushrooms with inverted heads, radio telescopes are blooming on the American landscape in one of the most prodigous growths of equipment in the history of science.

Nourished by military dollars, a whole new branch of astronomy has burgeoned in this decade. Listening to static from the stars was only a stúnt until the end of World War II. It has proved to be a thoroughly practical activity in the dawning age of space.

The radio telescope's relation to killing large numbers of.people still appears temote but some of its uses could be important to military offense and defense. In a world which shudders to rocket blasts and nuclear explosions instead of the tramp of jackboots, a world whose future battles may be fought for the moon and Mars instead of mere earth continents, accurate information about the vastnesses beyond our atmosphere may prove precious indeed.
Hear Stomach Noise of Man 4 Miles Away

One reason the radio telescope has progressed so fast may be the familiarity of the ideas on- which it is based. It demands sophisticated electronics and ingenious structural engineering, but it represents only a couple of generations' evolution beyond the sets on which you listen to Braves games or your children watch the Three Stooges.

In its simplest form, the ore used in astronomical studies, a radio telescope is only a sensitive receiver. For most military projects it demands a transmitter, too, be-

Spectacular New Insights Into Cosmic Structure and Events Probable With Giant 'Ears' Being Built in United States and Abroad; Tracking Missiles and Space Ships Are Routine Uses

By HARRY S. PEASE, of The Journal Staff
scope receiver has a 700 tube amplifying system. It can detect a man four miles away by the radio noise from his stomach.
Possibly the most spectacular such instrument thus far is the 600 foot, 79 million dof lar "Big Dish" being bdilt for the navy at Sugar Grove, W. Va.

Milwaukeean's Design

One of its principal designers is Max O. Urbahn, a New York architect who was valedictorian of the 1930 class at Boys' Tech here. His mother, Mrs. Hedwig Urbahn, lives at 3851 N. 37th st., and a sister, Mrs, Elly Reinhart, lives at 15225 W. Burleigh rd., Brookfield.

Urbahn, now 46 , carae to this country with other members of his family in 1925 from what is now West Germany. His father, who died in 1956, was a maintenance engineer for the A. O. Smith Corp.

- The architect attended the University of Wisconsin-Milwaukee and studied further at the University of Illinois and Yale university before setting up his Manhattan offices.
Some purposes of the " Big Dish" are secret, but many can be guessed.

Most prosaic of its jobs but one of unquestioned importance will be the tracking of artificial satellites and space
off the moon. A series of arti-
ficial satellites about 25,000 miles high might permit unbroken communications to: any point on earth.

A Look at Venus

This partial list of things close to home raises questions enough to keep the instrument busy for years, but some of its most exciting. projects depend on its capabilities at far longer range.
No man has ever seen the surface of the planet Venus, for it is perennially shrouded in clouds. Used as a radar, the "Big Dish" could conceivably see through the clouds and determine at least how fast the planet rotates. It might even develop a crude map of the surface.
The machine can almost certainly supply us with accurate distances to the near-by planets. To astronomers, interested principally in the forces and principles that govern the universe, an error of 100,000 miles in the 483 million that separate us from Jupiter would not amount to much. The error would be crucial to astronauts who may attempt to fly there before the end of the century.
The "Big Dish" may answer such fundamental questions of cosmology as the origin of the universe, whether the universe has any limit and
miles, begin with 228 million. Multiply by a million. Multi ply by a million again. Then multiply by a thousand.

Not only will it pick up things at that distance; it will "see" them as they were 38 billion years ago. All the inferences that can be drawn from classical a stronomy seem to indicate that the universe began about five billion years ago, so the "Big Dish" may carry us across the horizon of time.

1,000 Foot Ear Planned

The growing family of radio telescopes constitutes one of the greatest mass assaults on the unknown in the history of science.

The United States alone has 33 majorinstruments
emits a high frequency shout and listens for the echo.

WTMJ broadcasts with 5,000 watts of power. WTMJTV sends its sound signal with 50,000 watts and its picture with 100,000 . By contrast, the strongest signal of any use to a radio telescope reaches the earth with a power of a hundredth of a billionth of a watt

A rather simple radio tele-

Max Otto Urbahn, former Milwaukeean and a designer of the navy "Big Dish."
in 1962 it will undoubtedly be called upon to follow orbiting and interplanetary vehicles' progress fifty million miles from the earth and to record the information they 'transmit with no more power than a hearing aid.

Many of its duties will be linked to earthly communication.

Bounced Signals Off the Moon

Our globe is girdled by an electrified layer of upper airmore properly, a group of such layers - called the ionosphere. The ionosphere has weather just as the lower air does. Its changes affect radio communications. They may be critically important, for example, in detecting and intercepting incoming rocket weapons.
The northern lights are caused by showers of charged particles falling on the earth from space, most of them from the sun. Such showers cause communications disruptions which are still imperfectly understood.

With much smaller radio telescopes which are working now, scientists in England and in the United States have exchanged messages experimentally by bouncing them
ning down or will continue forever as it is with only minor changes in deatil.

'See' Happenings

38 Billion Years Ago

The instrument's theoretical range is 38 billion light years, nearly 20 times that of the "Big Eye" on Mount Palomar. If you want to know the range of the radio telescope in מ-

- A small radio telescope now in use is this 60 foot instrument on Table Mesa outside Boulder, Col. The national bureau of standards operates it and a twin instrument a few miles away. The bureau is charged by congress with determining conditions which affect radio waves and setting standards for them. The visitors in the picture are an exception to the rule; normally only the operators are allowed to approach so close, to minimize radio interference. The sheet metal building houses banks of vacuum tubes and circuitry for the transmitter and receiver.
-Journal Stalf

planned, under construction or in usé:

The greatest giant's ear yet The greatested will be built號 by the air corce limestone in bowl of coral its antenna, Puerto Rico. meter will be 1,000 feet in diame but its beam too big to move, betronically will be warped elee within 20 to look anywhere within 20 degrees of straight up. Construction is to two months.

Because it is immovable, this machine will be relatively chean Its cost: $\$ 4,500,000$. cheap. Its cost. 54, Dish, Green Bank, W. Va., Dish, the National Science Foundation is erecting the 142 foot reflector of the National Radio Astronomy observatory. It is to operate next summer. The air force is erecting a similar instrument for Stanford university and another to be installed in Scotland. The University of Michigan recently dedicated an 85 foot, navy financed dish at Ann Arbor. Another 85 footer is being paid for by the navy for operation by the University

Radio Telescopes: 'A Mass Assault on the Unknown'

From nase 1. column 5 of California in Hat Creek, a remote area of the Lassen na uonal forest. The national Carnegie ustitute of Wash ington, D C operais some smaller sets with 60 foot re flectors.
The birtho of radio astrono my occurred in 1931, and the Jansky of Madison, Wis. Jansky, 23, was newly graduated from the University of Wisconsin when the Bel. a.ahoratories hired him and was interfering with the transatlantic radiotelephone calls. Some sort of interfer ence was occurring. The young engineer buill tenna of brass pipe and wood en scaffolding, put four scrapped wheels from a mod-

The Crab nenula, one of the most powerful sources o radio noises from outer space, is in our own galaxy, a mere 3,300 light years away. Lt is the renains of a star that blew up in 1054 A.D. with the power of about 1,000 $00,000,000,000,000,000,000$ (septillion) hydrogen bombs

IT Ford under it so it enuld otate, and set it up in a New ersey potato neld near Sandy He heard
He heard various local dis all he heard a steady hiss Sometimes the hiss was strong, sometimes weak. He considered a lot of possibilities, and it was more than a
year before he hit on the right one.
Stars Send Waves
The noise rose in the east and set in the west. Every day it rose four minutes was coming from somewhere in space, beyond the solar sysem, and it came from the direction that astronomers said was the center of our to the heart of the Milky Way,
He was, after all, a commu-
nications engineer and not an astronomer. Having identified the interference, he virually abandoned his investiations.
Profe
nored the hint he had provided, but an amateur radio perator whose profession was radio set design took up the study. His name was
Grote Reber, and he lived in Wheaton, III, a Chicago subWhe.
Reb
Reber read some of Jansky's reports in 1937. He set to work on a galvanized iron and installed in in his across, yard. After 15 months and $\$ 2,000$ of expense, he heard the stars. He identified a num ber of sources of radio noise in the sky, and two of his reports were printed in the Astronomical Iournal, bu
still nobody tonk un lenge.
Two technical develop. ments ripened radio astro nomy. One was the radar ex periments of World War Il astronomers' brilliant infer ences about the atomic proc esses in the stars. Together they pointed to the possibil thes of the new scientific too
In their tremendous nuclea explosions, in hurling electrified particles through their gigantic magnetic fields an possibly in other processes alone.
They send widely varied waves of electromagnetic en ergy at a constant speed of
186,000 miles a 186,000 miles a second. In fractions of millionths of inches to multiples of miles. Visible light is only a triflin portion of the whole range.
Found Galaxies
Unknown Before
By opening the radio win. dow into space, the astrono mers found things that optical astronomy had been unable to One intense raverlooked. turned out to be two galavies the size of our own-great pin wheels of 100 million stars
each, spread out over 100,000 light years of space-collid ing like a pair of cymbals. The optical men had overlooked but the radio men recognized them as a transmitter with a power of a million million mil lion million million million watts. That figure is 1 fol want to write it out. Most of the 3,00 sources discovered up to now have no visible counterpart in the sky, and are objects of

An excention that prove rickly identiffable was the Crab nebula in our own gal. axy, the remains of a sta Map Own Calaxy No cataclysm known in na ture matches that of a super nova, or exploding star, and
we are fortunate that this nne we are fortunate that this one away. The violence of the burst was roughly equivalent to the total which could have been put out by seven million
H-bombs exploded every sec ond sins exploded every se formed. Debris is still spread ing at the rate of 70 millio miles a day after 900 years
of slowing dowm. of slowing down.

Karl G. inventor of the radio telescope.

One of radio astronomy's more momentous achieve ments is the mapping of our own galaxy. The optical men were hopelessiy blacked from stouding its details. Great light from the center of the pinwheel
But just as radar can see things behind the clouds, ra dio astronomy can penetrate the interstellar dust.
Careful listening was re quired. Individual atoms ${ }^{7}$ of neutral hydrogen out in space were the teltales, and the av erage atom there gives off a 233 years. There are so many
atoms that their sound comes in as a steadyo hiss, but its power is onty a bilionth of a billionth of a watt.
In radio astronomy we stand where optical astronsaw thed when Gabileo first through his crudo 00 years ago
The new information the giant dishes may trace out with their pens on moving strips of graph paper, or present on dials or televsion much to our probably add as grand scheme of the as did the telescope made of glass

