INDIAN STATISTICAL INSTITUTE
 Tologram : STATISTICA, CALCUTTA-35 Telophones: $60-3228$ (9 unes)
 203, BARRACKPORE TRUNK ROAD CALCUTTA-85
 Professor T. A. Davis
 24 September 1962
 Biometric Research Unit

```
Dr. Grote Reber, "Stowell", C8IRO, Stowell Avenue,
Hobert, Tasmenia, Anstralia.
```


Dear Dr. Reber,

Hope you had wy letter Ho. Bio/TAD/1026 dated May 2, 1962.
I am enclosing a typed copy of my paper appearing in the next issue of "Journal of Genetics" which I hope will interest you. I have quoted your pablication liberally. But I am not sure of the year of publication of your paper in Castanea. Please confirin whether 1961 is correct or not. Also please give your comments on m papar. If you have further papers on this line, please send ee copies.

> Yours sincerely, (T. $\frac{\text { A. Davis })^{-4} 19^{\prime}}{} l_{b 2}$

THE DEPENDENCE OF YIELD ON ASYMMETRY IN COCONUT PALMS

By T. A. Davis
Indian Statistical Institute
Calcutta-35

Introduction

The main result here recorded is that coconut (Cocos nucifers) trees with a left-handed foliar spiral, yield, on an cverage, more nuts per year than those with a right-handed spiral. It is of course, likely that similar results will be pobtained in other arganiems. However, as the result appears to be unprecedented, I have published the data rather more fully than would be justifiable were I dealing with the effects of a manurial treatment or a gene substitution.

I previously (Davis; 1962a) mentioned that the leaves of coconut palms are arranged in five fight-handed or left-handed spirals, that the two types of trees are almost equally common, and that the difference is certainly not inherited, and probably not determined genetically. In view of the finding, that asymetry has an important effect on yield, I add some further data on the genetics and frequency of the two types, which confirm my former results.

History of the experiment

In India about 7,200 square kilometres (1.77 million acres) are under coconuts, this being 20 percent of the world area. Two-thirds of the Indian area is in the state of Kerala, and over 10 percent of the Kerala area is affected by a major didease, the root (wilt), responsible for an annual loss of some ten million rupees. It was desired to find out how far certain 'micronutrients' could prevent or control this disease. For this purpose an experiment was set up at the central coconut Research Station, Kayangulam. Half the trees were treated with Mg (A), half with $B(B)$, half with $G(C)$, half with $M n(D)$, half with $\mathrm{Fe}(F)$, half with Mo (F) and half. with $\operatorname{Zn}(G)$. The design is a " 27 confounded design" comprising 128 treatments, for example treatment AD E G means treatment with $\mathbb{M g}, \mathrm{Mn}$, 配 and Zn only. Each Buch treatment was applied to three trees, one healthy, one in the early stage, and one in the late stage of the disease. Thus the experiment involved 384 trees. Each of these trees, and many other trees standing in a a hectare (20 acres) field, received a basal manurial dose of 0.75 lb nitrogen as groundnut cake, 0.75 lb foophoria acid as bone meal, and 1.5 lb of potash as "muriate of potash"(KGl) per year. The whole area received an annual dressing of e owts slaked lime per acre, and each year a green manure arop was raised and incorporated uniformly into the soil.

The treatments were applied annually in shallow trenches round the bases of the stems. The experimental trees were so selected that none stood close to another. There are 16 main plots each containing 8 healthy trees, 8 with the early symptoms of disease, and 8 in the late stage. It ras not possible to find, in each plot, isolated trees of the desired health category and the same age. More importance was attached to the category of the trees, and the age varied from 20 to 65 years.

From 1953 to 1960 I was in charge of this experiment, and can vouch for the accuracy of the data. There are records of the spreading and shedding of every leaf, measurements of leaves and counts of leaflets, opening of spadices, numbers of female flowera, numbers of nuts matured, etc. However the weight of nuts from individual trees was not recomed. Besides this, data on the yleld of mats from aach tree from 1949 to 1952 inolusive are available. I do not doubt that they are substantially correct, but have reason to think that some nuts vere stolen. The micronutrients were first applied in September 1953, and it was first intended to continue it for 5 years only. However since no significant effect of any treatment was found, it was decided to continue it for another five years.

As the data on nut yields were available, I decided to see whether the non-inherited asymetry had anything to do with the yield. Each palm was classified for its leaf spiral and I found, to my very great surprise, the large effects shown in Figs. 1 to 3. Before discussing these it will be desirable to describe, some tests.

Tests for bias

The trees were chosen without regard to their spirality． 177 of the 384 were Lefts．In future I shall use the words Lefts and Rights to mean trees with left－handed or right－handed foliar spirals．The expectation on a basis of equality is 192 ± 9.8 ． The excess of Rights is not significant at the 5 percent level．Each of the 48° sub－plots contained 8 trees，all healthy or all in the early or late stages of the disease．The numbers of sub－plots containing a given number of lefts are given in Table 1.

Tabie 1

| Lefts | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots found | 1 | 1 | 6 | 14 | 14 | 8 | 3 | 0 | 1 | |
| Plots expected | 0.34 | 2.34 | 7.01 | 11.98 | 12.80 | 8.76 | 3.75 | 0.92 | 0.10 | |

The number of plbts expected with n lefts is $\binom{8}{n} \frac{48.59^{n} \cdot 69^{8 m}}{128^{8}}$ ．
It is a little unexpected that even one plot was found with 8 Iefts，however the variance of the number of Lefts is 1.969 ，the expected value being $\frac{8 \times 177 \times 207}{384^{2}}=1.988$ ．Thus the Lefts and Rights were adequately randomized as between blocks．With regard to treatments I have only tested randomness for the healthy palms，as these alone showed a significant excess of nuts on Iefts．Among the 128 healthy trees 29 Lefts and 35 Rights received treatments A， 29 Iefts and 35 Rights did not．This we get in Table 2（a），rkore a means treatment a not received．

	（e）	
	L	R
E	37	27
e	21	43.
	$x_{y}^{2}=8.0709$	

	（g）	
	L	R
G	31	33
g	27	37
	$x_{1}^{2}=$	5044

Only one of these values，taken by itself，is significant of bias．
The total $x^{2}=12.3585$ ，giving $P=.10$ ，which is not significant．Inspite of the curious association of lefts with an iron supplement，I think the randomization was adequate：

Treatment of exceptions

The yields of all 384 trees from 1949 to 1960 were tabulated．The tables contain 6144 entries，and I hope to publish them when the analysis of various interactions is completed．The data have been condensed in Tables 3， 4 and 5， and the graphs show furthen features．

Three of the 384 trees，one left and two Rights，gave no nuts＂at＂all during
years before their deaths. The nuts are harvested 8 times per year, and partial yields in the year when a tree died are omitted. A few other trees only started producing after 1949. These trees were treated like those which died. But in the case of the 128 healthy trees this adjustment only affects the pre-treatment yield, while it is the post-treatment yields which are more accurate and differ more significantly between lefts and Rights. As it happens two of the healthy palms which died were Rights and one a Ieft. If the data had not been adjusted, the yield of the Iefts would therefore have been relatively higher.

The difference of yield between Lefts and Rights

In each of the 6 comparisons made in Table 6 it will be seen that the mean number of nuts on the Iefts exceeds that on the Rights. This is clearly shown in Figs. 1 to 4 .

Table 6. Annual yields

Category	Number		12 years $1949-1960$		6 years 1955-1960	
			Mean	Variance estimate	Mean	Variance estimate
Horlithy	$\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 58 \\ & 70 \end{aligned}$	$\begin{aligned} & 57.69 \\ & 49.82 \end{aligned}$	$\begin{aligned} & 437.42 \\ & 366.74 \end{aligned}$	$\begin{aligned} & 65.60 \\ & 54.28 \end{aligned}$	$\begin{aligned} & 616.46 \\ & 455.17 \end{aligned}$
Early diseased	$\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 60 \\ & 66 \end{aligned}$	$\begin{aligned} & 32.95 \\ & 30.55 \end{aligned}$	$\begin{aligned} & 292.12 \\ & 375.34 \end{aligned}$	$\begin{aligned} & 36.54 \\ & 33.10 \end{aligned}$	$\begin{aligned} & 323.24 \\ & 524.715 \end{aligned}$
Late diseasęd	$\begin{aligned} & \mathrm{I} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 56 \\ & 64 \end{aligned}$	$\begin{aligned} & 22.05 \\ & 20.04 \end{aligned}$	$\begin{aligned} & 266.56 \\ & 186.59 \end{aligned}$	$\begin{aligned} & 23.63 \\ & 20.33 \end{aligned}$	$\begin{aligned} & 314.68 \\ & 239.12 \end{aligned}$

The significance of these differences, as shown by the t test, is given in Table 7. The distributions of the means are near enough to normality to make the t test unobjectionable. However, it somewhat under-estimates the significance,

Table 7. Significance of Ieft-Right differences

because, as will be seen from Fig. 1 to 3, during the last period of 6 years, in which the data are most reliable, the Lefts in each group surpassed the Rights in every year. Since the yields of a given tree in successive years are highly correlated.
and, as the result of alternation in some troes, those in years \underline{n} and $\underline{n}+2$
probably still more highly correlated, the excesses in different years are not independent. So it would be difficuit to calculate how much the figure of . 0038 would be reduced if the data for each year were considered.

The data for the diseased trees are not in themselves significant, but are in the expected direction, and considerably enhance the significance of the data on the healthy trees. In fact the overall probability that, the Rights produce as many or more nuts as Lefts is about .00014, and still less if the supplementary information from the first 6 years and from the concordance of different years is taken into consideration. Probably P would be about 10^{-5}. However there is no doubt of the significance of the result, and it is more important to show that Iefte yield, more than Pights in other brecds and climates.

FIg. 5 shows the distributions of the yields of healthy Lefts and Rights from 1955 to 1960. If a population had been made up of half of each, ite variance would have been 600.0 ; of which the difference between the means of Lefts and Rights contributes 64.07 or 10.7 percent. Among the healthy trees after treatment the Lefte gave 20.9 percent more nuts than the Rights. But it is perhaps more instructive to consider a population composed of equal numbers of Iefts and Rights. It would have a mean annual yield of 59,94 nuts. It is quite possible to cull the Rights as seedlings before transplantation. In this.particular case this procedure would have increased the yield to 65.60 , that is to say by 5.66 nuts per year, or 9.4 percent. This could be a considerable economic advantage. But before such a procedure can be recommended, i土 will be nesessary to show that:
(a) The increased number of muts is not offset by a diminished yield of copra.
(b) That the results obtained in one plartation in Kerala are also obtained elsewhere.
(c) That the effect is not one of the type discovered by Roy (1960) and Lefts being stimulated by Rights, and Fights depressed by Iefts when they are grown in a mixture.
I hope to investigate these possibilities.

Differences in the leaves of Lefts and Ryghts

The higher nut yield of the Iefts is very probably due, at least in part to the fact that they possess more leaves. In 1953, when micronutrients were first applied, the total numbers of green leaves were counted. Each leaf was numbered with weather. proof paint, and only the numbers of fully opened leaves. (that is to say those whose lowest leaflets have emerged from the clasping leaf-sheath) were included. A tree usually has about five leaves which are not fully opened but. partially visible above the sheath. The date of emergence of each leaf was also recorded.

Table 8 gives means and variances of leaf numbers, For the heal thy trees the mean difference is 1.60 leaves, and quite significant. This means that Lefts have on an average 504 percent more leaves than Rights.

Table 8. Number of green leaves per palm

Particulars	Maen		Variance		t	P
	Left	Right	Ieft	Right		
1) Healthy palms	31.19	29.59	17.88	15.23	2.23	. 014
2) Moderately diseased	29.18	23.25	22.12	18.12	1.17	. 12
3) Severely diseased	26.16	25.40	19.85	18.88	0.97	. 17

The differences for the diseased trees ere in the same direction but not significant. Since they bear 20.9 percent more nuts, the greater number of leaves can hardly account for all of this excess.

The next step is to compare the ieaves. I have as yet no data on stomata or ahloroplasts, however table 9 compares 6 characters. 1583 leaves from 55 healthy trees (experimental tifees, selected at random, were measured for their total lengh, length of lamina region and petiole, length and width of longest leaflet, and the number of their leaflets counted. Of these, 24 trees were Iefts. In each tree about 30 consecutive leaves were examined. As normally a tree takes a little over two years to produce 30 leaves, the data given in table 9 may be free from any bias due to seasonal variations.

Table 9. Coconut leaf : Sumary of 6 characters

Characters	Means		$\bar{x}_{1}-\bar{x}_{2}$	Variances		t	P
	- $\overline{\mathrm{x}}_{1}$	$\dot{\bar{x}}_{2}$		s_{1}^{2}	S_{2}^{2}		
1. Total length	420.31 cm	407.14 cm	-4.83 cm	195.3504	182.6724	6.9486	. 001
2. Iengths of petiol	101. 5 " ${ }^{\prime \prime}$	106.09 "	-4.54	28.4510	28.7752	16.7466	. 001
3. .engths of green region	$300.76{ }^{\prime \prime}$	301.05 "	-0.29	761.2023	1258.0989	0.1774	0.8584
4. No. of leaflets on one half	108.19Nos.	109.59Nos.	-1.40 Nos.	19.039\%	- 44.4354	$6 \cdot 7437$. 001
5. Longest leaflet:							
i) Length	108.19 cm	106.84 cm	+1.35 cm .	63.1031	56.9374	3.4500	. 001
ii) Width	5.29 "	5.30	-0.01 "	0.2672	0.3747	0.3534	0.723

Suffix 1 denotes Lefts
Suffix 2 denotes Rights
$n_{1}=693$ leaves (from 24 palms)
$r_{2}=890$ leaves (from 31 palms)
The total length of the leaf is the distance from the broadenod leaf base to the tip of the central axis which ends usually with a single leaflet or somewhat prolonged into a small whip (Venkatanarayana, 1957). The region from the leaf base to the base of the lowest leaflet is regarded as the petiole and that from the base of the lomest leaflet to the base of the topmost one forms the green leaf-region or the leaflet-beering region. Thls leng has been obtained by subtracting the length of the petiole from the total lensth of the leaf. The number of leaflets is usually counted for one side. But the leaflets of both the sides are not the same in number. While making the counts, no specific side was preferred, and it is presumed that the probability of counting both sides is equal and therefore the difference between sides, might not have vitiated the results significantly. The lezgth as pell as width of the leaflets increase when proceeding from the lowest leaflet (nearer to leaf base) and at about the third of the leaflet-bearing region from the base, the longest and presumably the videst leaflets are met with. It is customary to measure the length and width of this leaflet for estimating the green leaf area.

Table 9 contains some leaf measurements. While the overall length of the leaf of a Right is greater than that of a Ieft by 4.83 cm , the length of the green leaf portion which is the vital part of the loaf, is practically the same for both the types. The difference, therefore, is brought about by the significantly longer petiole in the case of the Right. Patel (1938) considers the longer petiole to be decidedly an undersirable character since it is positively correlated vith longer peduncles of inflorescence. Further, longer leaves are associated with palms living under over-cromded situations, and where there is lack of light. A leaf of a Right has 1.4 leaflets over the other on one side and this works out to be 1.29 percent. But a Left is superior by possessing 1.26 percent more width of the longest leaflet. Thus, the green leaf area of a leaf of the left may be regarded as equivslent to that of its counterpart. Therefore the excess 1.6 leaves per palm of the Ieft is significantly more than the Right. Normally this should contribute to some extent the production of the extra number of nuts.

The extra number of leaves of the lefts normally should enhance the number of their bunches, although a greater mumber of bunches need not necessarily denote a greater number of nuts. The numbers of leaves shed by all the healthy and diseased (experimental) palms during the 12 months in 1958 are given in table 10.

Table 10. Number of leaves shed during 1958

Particulars	Left handers			Right henders		
	mean	max.	\min 。	mean	max.	min.
Healthy palms	13.59	17	11	13.58	16	9
Moderately diseased	13.23	16	7	13.23	17	9
Severely diseased.	$\therefore 12.65$	16	10	12.36	16	7

Among the healthy group, the Lefts and Rights had shed the same number of leaves. As there is a positive correlation between the leaves shed and leaves produced in coconut, it may be presumed that the rate of production of lasves in the Jefts and Rights is the same when once the stage to possess the normal numbers of leaves is reached. This may therefore mean that the leaves of the lefts remain green on the crown for a longer period.

New genetical data
Besides the data (Davis 1962a) for trees both of whose parents are known, I give data on 308 seedings from 5 mothers in a large nursery, sowh in 1960 and examined in 1961. The pollen parents are of course unknown, but presumably were about equal numbers of Lefts and Fights. Table 11 shows no significant heredity.

Table 11. Leaf spirals of mogeny obtained by open pollination

The 3 left seed parents gave $78 \mathrm{~L}, 75 \mathrm{R}$, the 2 Rights gave $72 \mathrm{~L}, 83 \mathrm{R}, \mathrm{X}_{1}^{2}=0.632$,
so the slight tendency to resemble the seed parent is quite insignificant.

However in view of our ignorance it is worth while to enquire whether there is any evidence of somatic segregation within bunches. The values of X^{2} for heterogeneity for the 5 trees are 1

$$
\begin{array}{ll}
x_{2}^{2}=2.262 & x_{3}^{2}=3.058 \\
x_{4}^{2}=2.097 & x_{2}^{2}=0.302,
\end{array}
$$

totalling $X_{18}^{2}=15.13, P=.78$. It is possible that further work might shov a significant tendency to equality within bunches. There is no suggestion of segregation between bunches.

Table 12 gixes data on asexual reproduction in exceptional palms scattered over most of the coconut-producing area of India and observed by myself since 1960. Double shoots in a cooonut are possible due at least to three causes. In a fruit only one seed usually develops, the other two aborting at an early stage. But in exceptional cases where two seeds remain fertile, two shoots (one from each seed) are possible fan sumpt, Even in the case of fruits with only one developed seed, two or more shoots are possible due to polyembryony. Further, when the single shoot branches at an early stage, two shoots from a fruit are possible, and this phenomenon is called suckering: I have also mechanically divided the single shoots in two muts

Table 12. Double shoots, Branching/Suckering

inducing two shoots in each case (Davis, 1960). I have studied the direction of leaf spiral in 33 such double shoots. Of these, twenty shoots had one left and the other right. But in seven others, both the shoots had left spirals while in six others both were rights. On a random basis, for 33 pairs of tins, the position will be,

Spiral	Observed		Expected
LL	7		8.25
IR	20		16.5
RR	6		6.25

There is a slight excess of unlike pairs, but this is not significant.

I also give the spiral directions of the various shoots of branching and suckering palms examined by me. The shoots per palm ranged from three to seven. However, I have observed coconut palms with as many as 27 shoots, but their leaf spirals could not be examined. For the sets of 3 , the following is the situation,

Spiral
IU
Observed
1
2
2

> Expected
0.625
1.875
1.875

Similar \#y for the sets of 4 5, 6 and 7 the orders can bo tabulated. Ther is no indicetion of the eharacter being inherited. I consider that in a pelm with more than one shoot, even if one shoot shows a different leaf spiral, it pugge sta the nonegentical nature of the character. Since these are the vegetative shoptge they can be layared (Davisf 196\%b) and propagated into individuals. In whioh case one could get olones with different opirals. However, another phenomenon occurs in the coconut where the flower bunches instead of developing into spadices revert to vegetative shoots, ocourrence of which has been recorded by many. In one such tree where the mother was a Left, I found 16 of the "progenies" out of 20 behaving like the mother. Thus the bulbil-shoots have a strong resemblance to the "mother", $X_{c}=6.05$. More accuratelly, the probability of getting 16 or more out of 20 resembling the parent is $6,196 \times 2^{-20}$, or 0.00591 . So it is fairly sure that there is real resemblance. But I feel it may be hasty to come to conclusions from a single case. I propose examining more of such abnormal palms.

Self-pollination also can be effected artificially in the tall variety. Sinoe the viability of the pollen can be easily retained for over a week under normal desiccation, within which period the female phase of the same spadix is sure to commence. Of course, retaining the viability of the pollen is no longer a problem since under de日p-freezing, pollens remain viable even for a year. At the sgricultural Research Station at Nileshwar, Kerala, there are progenies obtained by controlled self-pollination. Second generations of these palms are also being obtained by further self-pollination. Out of the 16 progeny I examined at Nileshwar of a tree subjected to self-pollination, exactly half the number possessed a left spiral. Spicata is a peculiar variety of cocos nucifera where the spadix remains unbranched and which bears a greater number of female flowors than males (Jacob, 1941). When this was aroosed with an ordinary tall (B 4) having different leaf spirals, out of 25 progeny, 14 were Jefts. And when tall (B 4) was crossed with the spicata, exactly half progeny were Lefts.

Among palms, Hvahaene thebaica, H. coriacea and H. indica have the normal capacity to branch. There is a controversy with regard to their mode of branahing. Acoording to some it is dichotomous branching, while others consider the buds to be axillary. I am inclined to believe the latter view. This can perhaps be better understood if the branching which is rather common in Carysalidooarpu futescens, a suokering palm, is traced. Recently I observed the branches of a few palms of Hyrhaene thebaica growing at the Botanical Garden, Howrah, and noted that the leaf spiral in differept branches differed. There is also no order of this irregularity.

Having enough data to prose that the leaf asymetry in the coconut is . non-inhondted, I made an attempt to see whether the direction of leaf spirals could be changed by artificial means. I started mechanically dividing the growing points of young seedlings. In a seedling having a left-spiral, when the division vas effected, growth continued through only one half and this subsequent shoot had a right spiral. While many shoots behaved like this, in some, the same direction was maintained. These shoots were again and again divided till most of them died. Thus I saw that during some divisions, the direction of spiral in the subsequent ahoot changed while in others not. I may further mention that the leaf spirals of the different shoots of tize two twins I have induced artificially are of opposite

 lefopirsi from left to right at a point about 0.7 m above ground level and where a prominent abnormal swelling is visible which I believe is the result of severe mechanical injury.

Frequency of Lefts and Rights

I had earlier reported my observation on 3028 palms gathered from eight small regions in Calcutta, Madras and Kerala. The Iefts accounted for 52.05 percent, and some peculiarity was observed between the smaller groups. The difference of the totals was significant ($P=.020$) by the usual criterion. This would not be so if the ratios in the different groups vere significantly heterogeneous. But X^{2} as a test of ${ }^{\prime}$ homogeneity was not very high in spite of one exceptional population. So I decided to observe a large number of trees (over 10,000) first, to establish the existance of the excess of lefts with higher probability, secondly to establish whether exceptional populations are common, and thirdly to detect regional or racial differences, if they exist.

Data given in table 13 are about the tall variety of coconut collected personally by myself from five of the coconat groming states at oentres mentioned belom; West Bengel : Calcutta, Howrah and 24 Parganas; Orissa! Cuttack, Sakhigopal and Puri; Andhra Pradesh i Anakapalle, Visakhapatnam and Waltair; Madras : Madras city, Madurai, Kanyakumari and Nagercoil; Kerala : Kayangulam, Ernakulam, Kozhikode, Nileshwar and Kasaragod; and Mysore : Mangalore. The palms observed include bearing

Table 13. Distribution of lefts and rights in India
(Data collected by author)

Place		Lefts	Rights	$\underline{+}+\mathrm{R}$	I-R
1. West Bengal		867	829	1696	-38
2. Orissa		712	734	1446	-22
3. Andhra Pradesh		679	521	1200	+158
4. North Madras		672	695	- 1367	-23
5. Central Madras		522	513	1035	+9
6. South Madras		537	507	1044	+30
7. South Kerala		523	504	1027	+19
8. Central Kerala		474	493	967	-19
9. North Kerala	- .-* -	793	703	1496	$+90$
10. Mysore	...	207	203	410	. +4
Total		5986	5702	11688	+284

and non-bearing palms and even young seedlings. I consider my observations to be fairly acourate, since I am familiar with alternative methods of determining the leaf spiral if I met with doubt by one method. Out of the total of 11,688 palms examined, 51.214 percent are Iefts. Though the Lefts are in excess, it may be mentioned that this figure is slightly less than what I got earlier on a much smaller population. The sub-figures are almost eyenly distributed except that for Andhra where the Lefts are 56.583 percent. However, X_{y}^{2} on the total. is 47.78 and hence P is less

I had also arranged to collect similar data (on tall variety) from a few more centres in India and the data are presented in table 14. The workers to whom the requests were made to observe the leaf-spirals and familiar with the crop, and clear instructions were given as to the method of making the observation. Out of 3,268 palms

Table No. 14. Distribution of lefts and rights in India
(Data obtained through others)

Place	Lefts	Rigits	I+R	I-R
1. Assam : Karimganj	254	252	506	+2
2. Madras : Kanyakumari	311	303	614	+8
3. Kerala : Neyyattinkara	189	231	420	-42
" : Kayangulam	421	358	779	+63
" : Kumarakom	215	185	400	+30
4. Maharashtra				
5. Gujarat Bhavnagar	302	247	34	75

thus examined, the lefts form 51.77* percent. In five out of six centres, it was the Iefts that were in excess though in small degrees. Thus when the Indian figures are pooled (tables 13 and 14) we get 51.337 percent of the 14,956 palms as Lefts and an excess of Lefts in 12 out of 16 populations.

Leaf data from abroad

Since the distribution of the two types of palnis in India has been observed to be almost in equal proportions, I was interested to see how the palms in the rest of the world behave with regard to this leaf character. The cocohut is distributed almost throughout the tropics, and the main regions according to Leo Schnurmacher (1938) are : Malayan Archipelago, consisting of the Philippines, -Netherlands - Indies (now Indonesia), Sarawak, Papua, How Guinea, Timor and Gambing; South East lsia comprising Malaya, Siam and Indochina; India and Deylon; Paciffe Pertitories (Gilbert and Ellice Islands, Nauru, Mariana, Caroline and Marshail Islands, Solomon Ise, Thew Caledonia, Fiji, Samoa, Tonga and Cook Is., FronchOceania and Guam); Wast Africa and neighbouring states such as Mruzambique, Madagascar, Tanganyika, Kenya, Zanzibar, Seychelles and Mauritius; West efrica, chiefly Gold coast, Nigeria, Dahomey, Guinea, Togoland, Angola etco; West Indies consisting of Irinided, Tobago, Jamaica, Grenada, St. Vincent, Virgin Ialands, Puerto Rico, St. Lucia and St. Kitts; Central and South America such as Mexico, Br. Guiana, Panama, Honduras, Columbia and Surinam.

Research organisations are not so far set up in all the above-mentioned countries or regions. But I am in contact with about 40 organisations covering most of the major coconut producing countries. I am glad that over 75 percent of the organisations responded to my request favourably by furnishing me with the data asked for by actual counts. In a few countries, the informations was obtained through more than one agency. I took care to, furnish detailed procedures including sketches to these agencies in order to collect uniform data, and I am satisfied that with a single exception (Br. Honduras), my explanstion proved clear enough to be followed without confusion.

I have given in table 15 the figures received from the various countries and that obtained from India, and they are arranged geographically starting from Tonga Islands in the Pacific Ocean, going west-ward via Indian Ocean, Africa, Atlantic Ocean and the Americas. The sums of the Lefts and Rights are almost equal. Of these figures, the one received from Andaman Islands are very peculiar, since the Iefts are only 37.35 percent. When I requested for more data from a different locality, the subsequent figures also showed the same peculiarity with a slightly increased intensity. Thus the morld totals give 50.76% Lefts without the Andamans which percentage is reduced to 49.85 when the figures for Andamans are considerec. However, the frequencies of Iefts and Rights in all the countries (from which data has been obtained) is almost one half in each case, in spite of this character being non-inherited. On the other hand the total Amerioan figure is 57.18% Lefts. But that for British Guiana is 63.51% which is as aberrant as the Andamans sample. A glance at the columns showing the differences of lofte and Rights in table 15 will show that a slight excess of Rights ie perceivable for countries starting from Tonga Islands roughly up to Ceylon. But beypnd this, the Iafts are on the increase and the intensity goes 1 on inereasing as we proceed towards America. The gradual drift in the proportion of the Lefts and Frights with distance (longitudinally) is unexpocted and an explanation porhags is worth trying for. Though I do not deny the pobsibility of slight inacouracies in the figures recoived from abroad I do not think that this gradual ohange with distance is due to any inaccurate observation.

Table 15. Distribution of lefts and rights. World, totals

Phe dwarf and other "varieties"

There are only two main varieties of coconut, the tall and the dwarf, although an intermediate is also noticed in some localities (the King coconut in Ceylon, Gangabondam in Andhra, India). The tall variety is characterised by its prodigious height, longevity up to about one hundred years and regular bearing habits. It takes about seven years to commence flovering and is. a highly cross pollinated variety. L the other hand starts bearing by the third year of planting and largely breeds true to type, since self-pollination is possible. It grows to only half the tall, and diés by about the sixtieth year. Cultivation of this variety on a large scale is not preferred on account of its poor copra.

I have given in table 16 data relating to the leaf spirals of the dwarf variety, the semi-dwarf (serial numbers 8 and 9) and a few other "varieties". The Lefte on the total of 1263 palms account only for 47.83 percent. When only the dwarf palms are considered (numbers 1 to 7), the Lefts are slightly less, 47-21 percent. Of the seven centres, five have excess Rights, one Left and the seventh is almost neutral. Of the two American figiures, while Jamaica has 54.74 percent Lefts, Surinam申 has 54.68 percent Rights and this do not seem to be in conformity with the figures for the tall variety.

Table 16. Dwerf and other varieties of coconut (Distribution of Lefts and Rights)

Place	Lefts	Rights	Itr	I-R
1. Dwarf : Jamaica	104	86	190	+18
2. Dwarf : Trust Territory of Pacific Is.	16	20	36	-4
3. Dwarf : Zanzibar	15	25	40	-10
4. Dwarf : Surinam	218	263	481	-45
5. Dwarf : India, Kayangulam	72	71	143	+1
6. Dwaxs : India, Kasaragod.	31	$\ldots 41$	72	-10
7. Dwarf : Indie, Calcutta and Madras	34	42	76	-8
8. King Coconut,	8	13	21	$\stackrel{5}{4}$
9. Gangabondam.	14	18	32	-4
10. Tall x Dwarf cross	54	53	107	+1
11. "Sparata" \times PaIl	3	1	4	$+2$
12. Tall x "Spicata"	6	6	12	-
13. Other exotic races	30	21	51	+9
Total	605	660	1265	-55

From the above table, it is fairly clear that the dwarfs have an excess of Rights. The progenies between the tall and the dwarf show almost a non-aligned position. But this being a single case comprising a smaller number of seedings it may be regarded as a chance occurrence.

Discussion

Further data confirm that the direction of the leaf spiral is not inherited. One can also add with some assurance that it is not genetically determined. For there are cases of genetical determination without heredity, for example sex in human beings and many animals, and heterostylism in plants where illegitimate pollinations are completely sterile. The date of Tables 11 and 12 also suggest that it is not due to extra nuclear segregation. I am investigating asymmetry in other plant species, and this may suggest reason why Lefts and Rights occur in nearly equal numbers. I also hope to discuss the world distribution more fully.

The slight excess of Lefts in most populations could be explained as follows, if a young seedling had exactly equal probabilities of being a Left or a Right. The Lefts have more leaves and a larger leaf areac. This may enable them to resist diseases and pests better, and if the most vigorous seedlings are selected, Lefts may be preferentially chosen. Both natural and artificial selections may operate.

I hope later to correlate other characters with the direction of the foliar spirals. These include girth of stem and height at given agas, the number of leaves in seedlings, the yield of toddy or sweet sap from inflorescences and possibly the hydrositatic pressure developed by the roots, which can exoed 12 metras \Rightarrow of water (Davis, 1961). From the economic point of view the annual yield of copra. and its oil content are still more important.

A number of scientific colleagues have been kind enough to write to me as to my results. Professor R.D. Preston, F.R.S. vrites "The connection between the yield of coconut palms and the tilt of the conducting tissue is very intriguing indeed and is so unexpected as to be on the verge of the credible. Since the sign of the spiral is not inherited then one is compelled to assume that the orientation of the conducting tissue affects the disposal of the materials being conducted and I know of no mechanism which would incline me a moni to heve beliewodsuch
 Whist corresponding to that of the leaf spirals. Petch (1911) was among the first
to report this. This applies to the fibres on the outer stele, but inner layers may tend to twist in the reverse direction. I have not so far succeeded in observing the presence or absence of a spiral organization either in the cell surfaces or the cytoplasm. The late Sir Ronald A. Fisher, F.R.S. was kind enough to examine my numerical data and to satisfy himself of their statistical significance. He wrote "He (Davis) is mistaken if he thinks that I think that he has nearly completed the elucidation of.a very queer situation". Professor Haldane, F.R.S. makes the following suggestion "The larger molecules of which palms are built, and in particular the cellulose fibres, are asymmetrical, and often arranged in spirals. But the direction of the foliar spiral may be a matter of "chance", that is to say determined by causes unconnected with the moleoular asymetry. The asymmetrical molecules may however fit more readily onto the growing tissues of trees with left-handed spirsls". Dr. R.C. Snow, F.R.S. is also of opinion that the arrangement of leaves at an early stage may depend entirely on external causes.

I describe below some fantastic results on beans reported by the Astrom Physicist, Grote Reber (1961) which are comparable with the results on coconuts. Nine different kinds of pole beans (Hawailan bean whose Linnaeun name was not mentionad) were planted in rows of about fifty hills each. All nine kinds twined about in the same direction as a right-handed screw thread. The vines on even numbered poles of three rows were carefully unwound and twined baokwards. The runner was loosely tied about two inches below the tip, and this process was repeated whenever the runner had grown eight to ten inches. 411 vines and pods were allowed to ripen, wither and dry on the poles and subsequently harvested. The field data on each hill consist of, number and weight of pods, number and weight of beans, weight of shuoks, number and weight of vines. In all cases there is an appreciably better ratio of opnces of beans/ounces of shucks, and to a lesser extent ounces of beans/ounces of vines for the reversed vines compared to the normal vines. $\bigwedge_{\text {pparently this training of the vines causes an increase in ratio }}$ of fruit to supporting structure. The same experiment was performed in a qualitative way both on Maui, Hawail and Kempton, Tasmania, Australia, with similar results. The reversed vines gave somewhat better production of green beans in these cases. It was reported that the vine turned the same way in both the norther and southern. hemiapheres.

Dr. Snow raised a doubt whe ther the extra number of nuts may not be due to the mistake of the person who harvests them, "since the bunches hang to the Kathodic side of each leaf; it is'easier for a right-handed'man to cut them off in a left-spiralled tree, and he tends to miss some bunches in the rightspiralled". But tho anomor is simple. Even if a fon ripo nuts remain uncut they will be accounted for either as shed nuts or during the subsequent harvest. The nuts of a tree are accounted for for a continuous period of 12 years, and the trees are harvested eight times in the year.

So far I have not weighed the copra of the two types of trees. Only if the increase in the number of nuts is proportionately seen in the weight of copra, can the superiority of the Lefts may be regarded as valuable. My yield data relate to a small locality in Kerala and I do not claim that this will be the situation elsewhere.

Summary

Further data confirm that the direction of leaf.spirals in Cocos nucifera: is non-inherited. In all probability it is also not genetically determined.

Fresh data on the frequency of Lefts and Rights from India as well as 23 other countries are reported. A slight excess of Lefts is noticed in most populations, but on the totals, the two groups do not differ significantly. However, in the case of a few countries, abnormal figures were received which show significant differences between the Lefts and Rights.

The Lefts give 20.9 percent excess yield of nuts over their counterpart, although it is based on a non-inheritod character, and that is quite inexplicable. Among diseased palms also the difference is in the ppsitive direction, but not significant by itself. The number as well as total area of the leaves of the Lefts are greater, and this may account, in partal forea the the leaves of the

Acknowledgment

A portion of the date presented in this paper relates to another experiment I was conducting at the Central Coconut Research Station, Kayangulam, Kerala(India). I am grateful to the Indian Central Coconut Committee and Dr. K.P.N. Menon, Director, Coconut Research, Kayangulam for enabling me to collect these data. I am obliged to the Joint Director, Coconut Reseerch; Kasaragod and the Superintendent, Agricultural Research Station, Nileshwar with whose cooperation I could gather most of the informetion contained in tables 11, 12 and 16. I am specially thankful to the various foreign and Indian colleagues who supplied me very promptly with the valuable data on the frequency presented in tables 14-16. But for Professor J.B.S. Haldane, F.R.S., I would not have realised the full significance of the pressent finding. He is also responsible for the statistical treatment of most of the data.

Reference

1. Davis, T.A. (1960) Clonal propagation in coconuts. Gurr. Sci., 29, 273.
2. (1961a): High root-pressures in palms. Nature, 192, 277-278.
3. (1961b) I Importance des racines aeriennes du cocotier. Oleagineux, 16, 653-661.
4. (1962a). The non-inheritance of asymmetry in cocos nucifera. 4 J. Genet., 58, 42-50.
5. (1962b) Asymmetry and yield in coconut Experi申ent.
6. Jacob, K.C. (1941) \& new variety of coconut palm (Cocos mucifera I. Var. spicata K.C.Jacob) J. Bombay Nat. Hist. Soce: 41, 906-907.

7. Patel, J.S. (1938) i The coconut - a monograph. Govt. Press, Madras.
8. Petch, T. (1911): Right and left-handed coconut trees Am. Royal Bot. Gard. Peradeniya. 5, 538-539.
9. Reber, R. (1961) : Reversed bean vines. Castanea, 25, 122-124.
10. Rö, S.K. (1960) Interaction between rice varieties. J. Genet., 57, 137-152.
11. Venkatanarayana, G. (1957): On certain aspects of the deveIopment of the leaf of Cooos nucifera I. Phytomor. 7, 297-305.

The leaves of cocos nucifera L. are arranged in a right-handed oi lift-handed spiral, the angle between corresponding leaves in successive whorls being about 30°. The frequency of lefts among 3,028 trees in India was $52 ; 05 \%$ (Davis, 1962) and among 13,842 trees elsewhere it was 52.90%. The asymmetry is not inherited (Davis, 1962) and has been regarded as trivial.

Of the 384 trees used at the Central Coconut Research Station, Kayangulam, Kerala (India) for trials of micronutrients, 177 were left-spiralled. They were divided into three groups, healthy, moderately affected by a major Root (rilt) disease, and severely affected. The mean number of nute per year borne by the right-spiralled and left-spiralled trees in these groups betreen 1955 and 1960 inclusive are shown in Table 1.

- Average number of nuts produced per tree
per year

condition of trees	$\frac{\text { no. of trees }}{\text { rimht }}$	nuts per tree/year		
Healthy	70	58	53.93	65.25
Moderate disease	67	61	32.60	35.98
Severe disease	70	58	18.58	23.15

The figures for the healthy trees give $t=2,721$ (126 degrees of freedom). The probability for a difference of that magnitude or more to occur being small ($\mathrm{P}=0.0076$), the assumption that left-spiralled trees give hichty jields, io strongly substantiated. The figures for the diseased trees, though not quite significantly different, strongly reinforce the siznificance of those for the healthy trees.

As neither the nuts nor the kernels from the two types of trees were weighed separately, it is of course possible that the total mean weight of copra produced by the left-spiralled trees was no greater than that from the right-spiralled. Nor is it claimed that all races of coconut, in all soils and climates, behave in this way. The biological fact here presented is however, I believe, novel. Many explanations cen be suggested for it, of which I hope to discuss some elsewhere.

DAVIS, T.A. (1962) The non-inheritance of asymmetry in Cocos nucifere. J. Genet. (under publicetion).

Asymmetrie und Ertrag bei Kokospalmen

Zusamenfassung

Die Blätter der Kokospalme (Cocos nucifera I.) sind in links oder rechtsdrehenden Spiralen angeordnet; Zahlungen an 3,028 indischen Palmen und an 13,842 Bairoń in andern Gebieten ergaben, dass die Palmen mit - Hixpiedrentuten Spiralon etwas äberwiegen ($52,05 \%$ in Indien, 52.90% in den ubrigen Verbreitungsgebietn). Kreuzungsversuche zeigton, dass vider Erwarten der Drehsim der Blattspirale nicht genetisch fixiert ist.

In einem Feldversuch, der sich ubor die Periode 1955-1960 orstreckte, lieferten die Palmen mit linksdrehenden Blattspiralen oine grossere Zahl von Nussen (Tab, 1).

Die Zehlen fur gesunde Baume, geben $t=2,721$. (126, Freiheitsgraden). Als die Wahrschoinlichkeit dass die Unterschied, die ebensoviel oder noch mehr betragt, klein ist, die Annahme dass, die linksdrehende Baume eine hohere Ertrag haben, ist stark gestuzt.

