Yale University

New Haven, Connecticut
23 August 1965

arrived

Observatory
535 Prospect Street
Box 2023, Yale Station
Tel.: 787-3I3I, Ext. 28 xu

Mr. Grote Reber
CAIRO
Tasmanian Regional Laboratory
Stowell Avenue
Hobart, Tasmania
Australia
Dear Grote:
I remember with pleasure your visit of several years ago, and we have indeed a working device (at last) which produces 10 simulaneous beams by use of broad operating bandwidth. In brief review, this device takes advantage of the fact that the fringe sparing of an interferometer with, say, a 10% bandwidth changes by 10% across the pass band. Only the fringe maximum corresponding to a zero time delay will occur simultaneously across the panband; others will be more or less displaced. Since the signal from the entire passband is detected, one records the sum of fringe patterns corresponding to each part of the passband. Only the zero-time-delay fringe will have full amplitude, the adjacent ones be washed out increasingly as the time delay increases. In fact, there will be of/ af fringes grouped about the zeroth order fringe having amplitude greater than half the central fringe, others dropping rapidly in amplitude.
so $f=250 \mathrm{mc}$
For example, our interferometer is spaced 1500λ with a bandwidth of $\Delta f=10 \mathrm{Mc} / \mathrm{s}$. This means that there are $25^{\prime \prime}$ fringes from half-power point to halfpower point. Each fringe is $1 \frac{1}{5} 00$ radian apart; thus our "beamwidth" from this effect is 25 radian 1500 .

$$
15 \overline{00}
$$

Multi-beaming is very simple, by using N detectors each of which is preceeded by a different transmission-line delay. The detailed layout of our device is illustrated in the accompanying diagram. Figure 1 shows the geometry: we restrict out attention to the meridian by using E-W linear arrays producing 1.2 fan beams. These arrays have very broad beam width in the N-S sense - about 40°. When they are operated as an interferometer, however, the significant fringes are contained in a N-S beam of 1°, as calculated above.

Figure 2 schematically shows the electronic set-up. All amplification occurs before the signals are combined in N detectors producing N different directions of the zero-time-delay fringe. In our case $N=10$, but it could very easily be 100 or 1000 , since the detectors are quite simple. This is the major advantage of the instrument - great ease of multibeaming. A
difficulty of course is interference, which can be partially circumvented by proper choice of operating frequency.

The array is currently in operation, with data piling up faster than we can handle it. Not much is available in published form; I'm enclosing a brief article that appeared some time ago, together with a(copy of one that will be published in November.) I'll send you other material as it becomes available. If you have some questions, Isl be glad to answer them by mail.

After 1 September, I will be at the University of Texas (permanently) where I will start a radio astronomy program to continue this work. My address there is: simply Dept. of Astronomy, Univ. of Texas, Austin, Texas.

How are your hektometric observations proceeding?

Best wishes,

James N. Douglas

JND/jz Encl.

SESSION 14: Radio Astronomy II

Chairman: J. Ruze

Radiation Engineering Laboratory, Maynard, Mass.

14.1: A Broad-Band Interferometer for Studies of Discrete Radio Sources

J. N. Douglas
Yale University Observatory

New Haven, Conn.

A radio thlescope must possess sufficient sensitivity to permit source detection in the presence of background and system noise, and sufficient angular resolving power to permit the study of one source at a time. Sufficiency in each case depends upon the observational program to be undertaken; in this instance we will be concerned with the requirements of a program for catalaging radio sources having flux greater than some minimum, value $S_{\text {mia }}=s_{m}(10)^{-a s} \mathrm{wm}^{-2}$ eps-1. The measurements to be made will be flux, angular dlameter and precise position. From existing catalogst and statistical experiments ${ }^{\text {T}}$, we can fix the resolving power. requirement at 100 antenna beam-areas per-source, and require sufficient sensitivity for a signal-to-noise ratio of five to one.
The number of sources per steradian outside the galactic plane brighter than it minimum flux s_{n} is approximately ${ }^{\text {i, b }}$

$$
\begin{equation*}
N=1800 \frac{\lambda 1.6}{S_{0}^{2}} \tag{1}
\end{equation*}
$$

Where X is the observing wavelength and π_{s} is the minimum fux in units of $(10)^{-25} \mathrm{w} \mathrm{m}^{-2} \mathrm{cps}^{-1}$. On the average, then, there will be one source every $1 / n$ steradian. The beam area is required to be less than $1 / 100 \mathrm{n}$, of the directivity greater than:

$$
\begin{equation*}
D \geq 2.26(10)^{6} \frac{\lambda 1.6}{14 ._{2}^{2}} \tag{2}
\end{equation*}
$$

The sources are seen dauint at general background of galactic noise which oufside the galactic plane produces an antenna temperature of approximately:

$$
\begin{equation*}
T_{Q}=100 \lambda^{2.5}\left({ }^{\circ} \mathrm{K}\right) \tag{3}
\end{equation*}
$$

when X is expressed in meters, The antenn temperature of a source of flux $s(I O)^{-3}$ io $\mathrm{m}^{-2} \mathrm{cps}^{-1}$ will be

$$
\begin{equation*}
\eta_{A} T_{s}=\frac{\eta_{A} s A}{2360} \tag{4}
\end{equation*}
$$

where A is the antenna aperture in square meters and η_{A} is the antenns aperture efliciency, which is unity for it losslesg antenne. The sigmol-to-fluctuation ratin at the output of ow system is

$$
\begin{equation*}
q=\frac{K s \lambda \sqrt{a r}}{13.6 \lambda^{3}} \quad a=\frac{\beta}{t} \tag{5}
\end{equation*}
$$

 one:
η_{A} the antenna efficiency, η_{2} the transmission ine efficiency and T_{n} the recelver nolse temperature. It will be noted that K is unity for an Ideal system ($\pi_{s}=\eta_{L}=1, T_{n}=0$). The collecting aperture required for a sigmal-to-fluctuation ratio (q) of five for the weakest source is thus:

$$
A=\frac{68 \lambda^{3}}{K s_{m} \sqrt{a r}}
$$

Equations (2) and (2) permit calculation of antenna directivity and collecting area for a survey dowa to limiting flux $s_{m}(10)^{-2 \pi} w^{-1} \mathrm{cps}^{-1}$ for a^{-1} pren $\lambda_{1}, 7$, and K. For a corrventional, lossleas antenna Eytem, bowever, directivity and collecting area are related:

$$
\begin{equation*}
A_{D}=\frac{D \lambda^{2}}{4 \pi} \tag{8}
\end{equation*}
$$

Where A_{D} is the aperture required to produce s directivity D at wavelength X . From (2) we have

$$
\begin{equation*}
A_{D}=1.8(10)^{5} \frac{\lambda^{3.6}}{s_{w w^{2}}} \tag{9}
\end{equation*}
$$

The antenna size will thus be given by the larger of (7) or (9), and uniess $A=A D$, either resolition pr collecting area is being wasted. For a given A and and $^{2} A=A_{y}$ for

$$
\begin{equation*}
\frac{\lambda 0.6}{b_{m}}=\frac{1}{2460 K \sqrt{a 7}} \tag{10}
\end{equation*}
$$

The observing time constant $₹$ may now be adjusted to insure no wastage, sind indeed the ability to observe more rapidly is useful up to a point. For example, with an electronio scanning system, the survey could be carried out at is number of declinations simultaneously on a timesharing basis For $\lambda=1$ meter, $\Sigma_{m}=1, K=0.5$, we find $V_{a \tau}=1 / 1230$, or $a \tau=1 / 1.5(10) 6$. For $a=001, \tau=660$ microseconds per measurement, permitting 1600 measure-men's-per-second on a time-sharing basis.
Although this way to full antenna utilization is possible, It is not ustasily economical. Altemativety, for a given minimum flux and recelver system, there exists a wavelenich of obsercation at which the antinna will be fully uiflized. This ontimum wavelength maty be inconvenient or undesirabily for other reasons. Accordingly, we consider antenna systems which de not obey equation (10). One such system is in Eeneral use in astronomy today - the Mtil Cross. In thit myntemi in recelver tecords the crossconrebition of the nxitec received in two perpendicular fan bearnil The besm ares of the fan beam is related to collectins stres by equition fro), but omly that noise ap-
pearing in both fan beams produces a correlated signal in the receiver. This correlated signal then is received with a pencti beam equal to the area of the Juisetion of the two fan beams, with a collecting aperture proportional to the sum of the fan beam areas. Thus to a certain extent, equations (2) and (7) may be satistied independently, although one still must retain enough area to produce the individual fun beams.

Another radiometer bystem which does not obey equartion (10) is the brondband interferometer ${ }^{1}$. Let 45 consider the case of the multiplicative interferometer, in which the signal reccived in two antennas is multiplied before detection. In the absence of discrete soturce radiation, the two signals are uncorrelated, and hence multiplication, which produces an outpui proportional to the correlation coefficient between the two signals, yields an average result of zero, although small fluctuations will be prestent. If a point source of noise is present, at angle, θ with respect to the perpendicular to the line joining the two antennas, this noise will appear first in one antenna $d \sin \theta$
and at a time $\tau=\square$ seconds later will appear in the second antenna. If we call the point source noise $x(t)$ and assume transmission lines to be of equal length, the interferometer output will be of the form:

$$
\begin{equation*}
E_{0}=\frac{1}{T} \int_{t}^{t+T} x(t) \times(t+r) d t=\rho(r) \tag{11}
\end{equation*}
$$

where $p(r)$ is the autocorrelation function of $x(t)$. If the source has a flat spectrum across the receiver passband, the spectrum of $r(t)$ is set by the shape of the receiver passbund $s(f)$. The autocorrelation function is the Fourier transform of the spectral density:

$$
\begin{equation*}
\rho(\tau)=\int_{-\infty}^{\infty} s(l) e^{12 \pi t r} d i \tag{12}
\end{equation*}
$$

If the receiver passband is taken to be that of a singletuned circuit of bandwidth β

$$
\begin{equation*}
s(f)=s_{0}\left[1+\frac{4\left(f-f_{0}\right)^{2}}{\beta^{2}}\right]^{-1} \tag{13}
\end{equation*}
$$

Euice, D. O. Shakeshaft, J. R. MCAdam, W, B Baldwin, J. E. and
1059
2 Goldatuin, S. J, Astrophysicat Joumal; 130, 333, 1950
: vom Hoerner, S., National Rudio Astronomy Observatory: vol 1, no. 2, 1961 .
Vingeviteh. V V. Prougedinge of the Academy of Selencer of
the USSR (Dokladi Adademit Noule SSSR Hovaya Sera D1). the USER (DO
$1301-1303,1053$.
${ }^{5}$ Whitheld, G. R., Paris Sympositen on Radio Astranomy Stanford Univ. Press, p. 297-304; 1959
then the autocorrelation function will be

$$
\begin{equation*}
\rho(r)=e^{-\pi \beta r} \cos 2 \pi f_{0} T \tag{14}
\end{equation*}
$$

The interference fringes will have maximum amplitude for $T=0$, and for values of T greater than $0.26 / a$ second, the fringe amplitude will be below half its mnximum value. For the casc of equal tranmmission Ime lengths, a fan beam perpendicular to the line jotning the two antennas is proctuced: this is of half-power beamwidth 23* dty, where dyy is the mocing between antennas expressed in wavelengths of the banoiwidth. The beam may be steered to other values of o by suitable changes in transmission line length, producing a fan beam 23°
(1) ${ }^{2}$
to half-power points By amplifying the sfgnals from each antenna soparately but coherontly, and combining in a number of detectors after varying time delays, a multichanmel system with each channel sensitive to an individuit direction may be obtamed By using two systems at right angles to each other, measurement of both right ascension and declination can be made. It must be remembered, however, that this is bisically an interferometer, and therefore fringe vinifiltity is also affected by angular diameter of sources, at once permistims a measurement of diameters by the usual techniques, and prohibiting the use of this device on broad sotirces or the background radiation. The required broad bandwidth may also constitute a problem in some regions of the spectrim, though not an insuperable one. On the other hand, the broadband interferometer appears to offer a number of advantages in this application: (1) Directivity and colfecting area set independently, permitting the use of antennas only large enough to provide sufficient sensitivity; (2) many declinations may be mapped at once withont excessive electronic complication; (3) the technical problems involved are minimized by having only three antennas to feed; and (4) sidelobes of this device are vanishingly small.

A prototype broadband interferometer now under construction at the Yale Observatory has been designed to catalog sources having $s=10\left(\mathrm{~S} \geq 10^{-2 s} w \mathrm{~m}^{-1} \mathrm{cps}^{-1}\right)$ on a $1-2$ meter wavelength. From equation (2) $D \geqslant 3.04(10)^{4}$, 1-2 meter wavelength. From equation (2) $D=3.04(10)^{4}$ corresponding to a 1 . 1.2 beam. For the east-west interferometer, this requires a spacing $\mathrm{d} \lambda \beta \equiv 20$. To maintain the minimum beamwidth to a zonith distance of 60°, the north-south interferometer has $d \lambda A \geq 40$. This is achfeved by using an $8-M C$ bandwidth, with the east-west pair spaced 750 meters and the north-south pair spaced 1500 meters. This spacing limits our survey to sources smaller than 3', and produces a positional accuracy of approximately 20°. From equation (7), we obtain $A=$ $137 \mathrm{~m}^{2}$ for $K=0.86, \alpha=1.30$ and $=3 \mathrm{cps}$. Ench interferometer element is n 32 -helix broadside array, adequately fulfilling the aperture condition. Ten declinations will be surveyed simultaneously, and the IBM 709 at the Yale University Computing Center will be programmed for data reduction and error analysis.

It is felt that this prototype systom, in addition to providing an independent catalog. will demonstrate the plausibility of this way of approaching the observation of discrete radio sources.

Fig I

