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THE LUNAR AND SOLAR AIR TIDES AT SIX STATIONS 
IN NORTH AND CENTRAL AMERICA 

B. HAURWITZ AND ANN D. COWLEY 

National Center for Atmospheric Research, Boulder, Colo.
 

ABSTRACT
 

The lunar semidiurnal tide and the solar 24-, 12-, 8-, and 6-hour oscillations have been determined for the six 
:~~~ns Balboa, Panama; San Juan, P.R.; Aguadilla, P.R.; Burbank, Calif.; Oklahoma City, Okla.; and Greensboro, 

1. INTRODUCTION 

The lunar atmospheric tide is of great theoretical interest 
because it shows the response of the atmosphere to a 
completely known external force, namely the tidal attrac­
tion of the moon. This interest has been further increased 
in recent years since it appears that a lunar period may be 
present not only in such meteorological parameters as 
pressure, wind, and temperature, but also in precipitation 
(for instance, [4]), and sunshine duration [10]. 

The best documented manifestation of the lunar air tide 
is the semidiurnal (lunar) surface pressure oscillation. 
Largely through the efforts of S. Chapman and numerous 
collaborators (for instance, [6]) this period is now known 
for more than 70 stations. These stations show that the 
distribution of the lunar tide is not entirely regular over 
the earth despite the regularity of the moon's tidal force. 
For about 60 of these stations the variation of the lunar 
tide with the seasons, which is in the same sense in both 
hemispheres, has also been determined: In general, the 
amplitude maximum occurs during the northern summer, 
and the daily high tides are reached latest during the 
northern winter. 

In order to increase our knowledge of the global distri­
bution of the lunar tide, a study has been started to analyze 
further data, and the present paper reports in part the 
results of this analysis for the first six stations. These 
stations with the relevant information are shown in table 
1. Only the pressure oscillations will be discussed here. 

Results of analyses of wind and temperature (not suc­
cessful in the case of the lunar tide) will be reported later. 

The observational data used for the tidal determinations 
were made available by the National Weather Records 
Center in Asheville, N.C. Bi-hourly values of the pres­
sure were used, with the first hour being 0 (midnight) 
Local Standard Time. The whole material was sub­
divided into the three "seasons" commonly used in air­
tidal studies, namely 

D: November, December, January, February 
J: May, June, July, August 
E: March, April, September, October (Equinoctial 

months) 
In each of these seasons the days were further grouped 
according to the daily lunar phase integer L (in its modi­
fied form which moves from 0 to 11 twice during the 
synodic month). For the years 1961 and 1962 these 
integers were computed by means of tables given by 
Bartels and Fanselau [3]. For the earlier years punched 
cards based on a compilation by Bartels [2] were made 
available by Dr. J. C. Cain of the Goddard Space Flight 
Center at NASA. 

For the stations Balboa, Oklahoma City, Greensboro, 
and Burbank the required bi-hourly mean values of the 
surface pressures for the different groups were computed 
by the National Weather Records Center. The harmonic 
analysis of these values was performed on an IBM 1620 
computer at the High Altitude Observatory of NCAR. 

TABLE I.-List of stations 

Number ofAlt. Years of RecordLong.Station I Lat. 
Days(ON.) (OW.) (ft.) 

I 

Balboa, Panama_________________________ 79.5 209.0
San Juan, P.R ___________________________ 6(}-8066.118.5 
Aguadilla, P.R. (Ramey AFB) __________ 18.5 67.1 220
Burbank, Cali!.. _________________________ ll8.4 72534.2 

Oklahoma City. Okla_______ . ____________ 35_4 97.6 886 
Greensboro, N.C .. __________ . ____________ 130436.1 80.0 

Mar. 194I-June 1958•• ______ 
Mar.1945-Aprill962_. _____ 
Jan. 1941-June 1958________ 
Jan.I942-Aprill945 ________ 
Jan. 1948-Dec. 1962 
Jan. 1945-Dec. 1962.________ 
Nov. 194r.---Dec. 1962._______ 

6156 
6142 
6217 
6589 

6534 
6184 
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The computing routine included the correction for linear 
change from midnight to midnight. This harmonic 
analysis gives the periods of 24, 12, 8, and 6 solar hours. 
The determination of the lunar semidiurnal oscillation 
was then performed following the method developed by 
Chapman and Miller[5] and also described by Tschu[13]. 
For the two Puerto Rican stations San Juan and Agua­
dilla, the original data were obtained from the NWRC 
on magnetic tape, and all calculations for these stations, 
including the computations of the bi-hourly mean values 
and the correction for linear change, we~ performed at 
NCAR on a CDC 3600 computer, because this permitted 
greater flexibility in experimenting with the data, es­
pecially as far as the omission of days with greater varia­
bility of the pressure was concerned. 

At all six stations one or more changes in the observing 
routine occurred: At Aguadilla, for instance, the obser­
vations were made 30 min. past the hour from 1941 
through 1952, on the hour from 1954 on. In all these 
cases, the data have been divided into time intervals of 
uniform observations practice. The various tidal de­
terminations have been made separately for these time 
intervals. Then, after the appropriate corrections of the 
phase constants were made, the results for the two time 
intervals were combined. 

After the determination of the tides for the six stations 
was completed, some errors in the card deck for the lunar 
integers L were discovered. During August 1942 all 
the lunar numbers were too small by 3, and in the period 
from 1943 to 1960, 18 days were assigned the wrong 
lunar number, but only in five instances was the difference 
between the correct and incorrect number greater than 1. 

For San Juan and Aguadilla the analysis was repeated 
with the corrected lunar deck. Table 2 shows for Agua­
dilla the effect of, or rather the absence of an appreciable 
effect, of the errors in the lunar deck. The lunar tidal 
oscillation is given in the customary form. 

L2(PO)=~ sin(30t+~2) 

where t is local mean lunar time, l2 the amplitude expressed 
in mierobars (1 ~b.=10-3 mb.=1 gm. em."! sec.-2) , 

>'2 the phase constant in degrees. The radius of the 
probable error circle is denoted by r, The results are 

given separately for the time intervals I (1941-1953) and 
II (1954-June 1958) into which the data are separated 
for the computation in order to allow for the change in 
observing time mentioned previously. Only the harmonic 
constants for the three seasons, but not those for the 
annual means are given, because any differences due to a 
faulty lunar deck should show up most in the results based 
on less material. The first line in the table for each 
period gives the results obtained before elimination of the 
errors in the lunar deck, the second line the results with 
the correct deck. The data, and those for San Juan, have 
been analyzed under the further restriction that those days 
were eliminated on which the pressure during any 2-hour 
interval changed by more than 4 mb. As would be ex­
pected for tropical stations, very few days were eliminated 
because of this restriction. The results with this restric­
tion are shown in the third line for each of the two time 
intervals. A comparison of the appropriate results shows 
that the deck errors, as well as the 4-mb. restriction, gave 
results which are not different from those obtained with 
the corrected deck. It seemed, therefore, not necessary 
to recompute the lunar tide for the other stations with the 
corrected deck or to introduce the 4-mb. restriction for 
the other stations. However, the results for Aguadilla 
and San Juan given in table 3 are computed with the 
corrected lunar deck. 

A somewhat surprising feature is the large value of l2 
during the D season for the time interval II at Aguadilla, 
If d is the distance between two points representing two 
oscillations in a polar diagram, e2 the sum of the squares 
of the probable errors of the two determinations, then 
T d2 2 

/ . is the probability that such a separation between 
the oscillations is due to pure chance, as shown by Bartels 
[1]. In the present case, this probability is 1: 4 so that 
one might well expect to find such a difference accidentally. 
Actually, because of the limited number of data available 
for the determination, the probability is even higher than 
indicated by the test which assumes a very large number 
of data. It will also be noted that the probable-error 
circle during the second time interval is larger than one 
would expect from its value during the first time interval 
and allowing for the difference in the length of the time 
intervals. 

TABLE 2.-Comparison of lunar tidal computation for Aguadilla 

I 
JSeason E SeasonD Season 

Length of Record 
>-,I I, r1, >-, r l, >-, r 

(deg.)(deg.) v,b.) (lib.)v,b.) (deg.) v,b.) v,b.) v,b.) 

Period I
Deck error ____________________________ .._____ 1941-536.149 4.4 5.8 51.0 7743.6 54.9 74No error_____________________________________ 13 yr.6.149 5.5 51.0 7743.6 4.4 56.7 75
4-mb. restriction , , __________________________ 6.543.2 49.9 5.6 49.7 76.84.0 57.0 76.4 

Period II
Deck error_____ ... _.. _____________ . _. ____ . __ 1954-June '58 7.97160.4 44 12.4 48.9 9.5 35.376
No error. _________ ... _. ___. ________________ . 7.7 4.5 yr.7360.6 12.2 48.6 9.8 36.744 74 
4-mb. restriction ... _. ____ ._. __. _. ____ . _._. __ 6.978.460.6 44.3 12.2 48.6 74.4 9.8 37.0 
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TABLE 3.-Lunar semidiurnal pressure oscillation TABLE 4.-Probability of large amplitudes in random data 

Season I, X,Station m=O)r Air m=12 
(pb.) (deg.) (pb.) 

Balboa, Panama_____________________________ Ann. 58.3 77.0 92. 
D 45.7 52.9 4.1 
J 72.0 83.8 95. 

San Juan, P.R.______________________________ 
E 
Ann. 

60.3 
50.7 

84.7 
75.2 

5.6 
2.1 

D 43.0 52. 9 4.1 
J 61.3 84.3 3.5 

Aguadilla, P. R ______________________________ E 
Ann. 

52.9 
48.4 

82.2 
68.7 

8 
7 

3. 
2. 

D 47.7 49.1 94. 
J 54.7 77.0 94. 

Burbank, CaliL _____________________________ E 
Ann. 

46.4 
25.8 ; 

78.2 
64.0 

4.6 
3.3 

D 18.4 14.0 7.2 
J 36.7 74.2 4.6 

Oklahoma City, 01<4>________________________ 
E 
Ann. 

30.0 
24.3 

80.4 
70.4 

4.8 
8.4 

D 20.5 83.7 14.7 
J 28.5 66.4 11.8 

Greensboro. N.C.____________________________ E 
Ann. 

24.3 
36.1 

73.8 
78.3 

10.2 
5.1 

D 39.4 68.5 14.1 
J 39.8 85.7 4.4 
E 30.2 82.3 7.6 

2. THE LUNAR SEMIDIURNAL TIDE 

The results of the lunar tidal determinations are shown 
in table 3 which gives the amplitude ~, the phase angle >-2, 
and the radius of the probable error circle r, In general, 
the annual mean amplitude shows the well-known decrease 
with distance from the equator. The amplitude is higher 
at Greensboro, N.C. than at Oklahoma City and at 
Burbank, Calif., which indicates the westward decrease 
of the amplitude over the United States found previously 
by Chapman and Westfold [6]. 

The seasonal variation of the lunar semidiurnal tide is 
generally characterized by a smaller phase constant 
(later high tide) during the D months than in the other 
two seasons. This is also shown by the data presented 
in table 3, with the exception of Oklahoma City. But 
here the radii of the probable error circles are so large 
that little if any weight can be given to this anomaly. 
The angle between the line from the origin to the point 
in the harmonic dial representing the oscillation and the 
tangent to the error circle is sin-1(r /12) so that the phase 
constant for the D months at Oklahoma City may be 
given as 84°±46°, showing clearly that the lunar tide is 
not well determined. 

Another feature of the seasonal variation of the lunar 
tide is the maximum amplitude during the J months 
which is shown at all stations given in table 3, although 
at some stations with large probable errors, the difference 
between the D and J months is statistically not significant. 

In considering the data in table 3, it should be remem­
bered that the determination of an oscillation cannot be 
considered satisfactory if the amplitude is not at least 
three times larger than the radius of the probable error 
circle. The probable error circle is commonly used in 
considering the reliability of the determinations of geo­
physical periodicities, largely thanks to the pioneering 
efforts of Bartels. It could, of course, be replaced by 
some other statistical measure. However, the use of the 

0.5.________________ 1: 1. 2 1: 1. 2L__________________ 1: 1.9 1: 2.0 
1.5_________________ 1: 3.9 1: 4.72___________________ 1: 9.4 1: 15.8 
2.5_________________ 1: 23.8 1: 74.4 
3___________________ 1: 61 1: 4933.5_________________ 1: 146 1: 4870 
4___________________ 1: 324 1:59000 
4.5_________________ 1: 662 1:1.11'10' 
5___________________ 1: 1200 1:29.4'106 
6___________________ 1: 3290 
7___________________ 1: 8100 
8___________________ 1:12200 
9___________________ 1:19700 
10__________________ 1:26900 

probable error makes the comparison with earlier results 
much easier and permits also the direct application of 
various theorems derived for it to the interpretation of 
the results. 

If the amplitude A, the radius of the probable error 
circle r, and the number of groups of data from which the 
probable error circle was computed are known, the proba­
bility p can be estimated that an amplitude of this magni­
tude may be found in random data (Haurwitz [7]). This 
probability p is shown in table 4 for m= 12, and for m= 00. 

The number 12 was selected because the Chapman-Miller 
method used here is in effect based on the determination 
of the lunar tide L 2 by means of the solar semidiurnal 
oscillation 8 2 grouped into 12 lunar phase groups. If 
A=3r, the probability that such an amplitude is found in 
random data is 1: 60, but this probability decreases rapidly 
as A increases relative to r, Table 4 should help in the 
understanding of the significance of the probable-error 
circle in connection with the presentation of ~eophysical 

oscilla tions. 
While the amplitudes of the lunar tide at San Juan and 

Aguadilla agree reasonably well, the phase angles differ 
by about 7° despite the close proximity of the stations. 
Similar phase angle differences will be found for the solar­
day oscillations at both stations (table 5). Since allow­
ance has been made for the fact that the observations were 
not all made on the hour, the explanation cannot be sought 
in a change of the observing routine, and in fact no explana­
tion is readily apparent. Correspondence with the 
National Weather Records Center on this point indicated 
that some minor changes may have been made in the times 
when the observations were taken, but it is not possible to 
reconstruct such hypothetical changes now. 

It is of some interest to mention here briefly some 
results of a pilot study undertaken prior to the determina­
tion of lunar tides on a large scale. In order to have a 
statistical estimate of how many data might be required 
for a reliable determination of the lunar tide an analysis 
was performed using the pressure observations at Balboa 
for the year 1953. The lunar tidal pressure oscillation was 
found to be: 

44.8 /-Lb. sin (30t+84.8°), 
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TABLE 5.-Solar-day oscillations 

I.. T3 (job.)
8, (job.)
 17, (deg.)
 83 (job.)
 173(deg.)
 8, (job.)Season 81 (job.) 171 (deg.) T1 (job.) 17< (deg.)Station .. (lOb.) 

Balboo. __________________________________ Ann. 651.2 7.5 --------- ­ 1286.2 153.4 ---------­ 47.7 49.8. --------- ­ 41.4 172.0 ---------­
D 684.6 8.2 6.8 1370.8 157.3 ---------­ 80.4 29.5 3.4 48.1 182.1 3.0 

San Juan_________________________________ 

J 
E 
Ann. 
D 

520.0 
749.9 
281.1 
300.8 

9.4 
5.4 

353.4 
341.8 

8.5 
8.0 

--------- ­
7.6 

1153.3 
1352.4 
1045.1 
1127.7 

148.2 
154.2 
149.7 
152.4 

------_.-­
---------­
---------. 
---------­

36.5 
47.4 
47.5 

170.5 

106.3 
52.0 
48.9 
10.1 

5.4 
3.9 

--------- ­
2.8 

20.3 
58.1 
47.6 
68.0 

150.9 
170.8 
166.5 
191.8 

6.2 
3.4 

---------­
2.9 

J 235.3 11.4 7.8 899.4 146.0 ---------­ 99.6 163.1 3.3 36.8 137.6 2.2 
Aguadilla_________________________________ E 

Ann. 
325.3 
272.1 

351.2 
336.4 

7.4 
--------- ­

1112.7 
1046.3 

149.9 
146.5 

---------­
---------­

54.1 
77.5 

63.3 
32.2 

2.7 
-------.-. 

50.6 
45.1 

154.6 
155.6 

2.8 
---------­

D 309.4 334.0 8.1 1170.9 149.7 ---------­ 190.3 2.9 2.2 60.4 177.3 2.6 
J 205.7 348.0 5.2 878.0 142.0 ---------­ 74.8 131.1 2.4 34.4 133.1 2.4 

Burbank•• _______________________________ E 
Ann. 

307.4 
720.0 

331.1 
358.2 

7.3 
--------- ­

1096.3 
725.5 

146.8 
150.0 

______ w ___ 

--------- ­
81.8 
88.9 

44.4 
16.4 

3.2 
-------.-. 

48.4 
30.6 

144.6 
226.9 

2.1 
---------­

D 686.6~ 1.8 12.1 835.7 155.8 --------- ­ 272.7 357.6 4.2 88.0 202.0 2.7 
J 715.2 350.8 8.8 604.4 142.1 --------- ­ 99.9 144.1 3.0 19.0 297.1 2.4 

Oklahoma City___________________________ 
E 
Ann. 
D 

703.3 
818.7 
590.8 

357.8 
339.7 
346.6 

9.6 
_.------- ­

29.9 

746.4 
693.8 
728.7 

150.2 
148.4 
156.0 

--------- ­
-----.--- ­
--------- ­

69.3 
55.5 

244.4 

23.1 3.2 
3.5 ---.----- ­

351.3 11.6 

17.7 
56.6 

108.2 

300.0 
193.1 
185.3 

1.9 
---------­

11.5 
J 997.5 335.2 19.7 625.7 138.2 --------- ­ 130.9 149.4 7.6 46.8 196.8 11.3 

Greensboro_______________________________ 
E 
Ann. 
D 

868.8 
664.0 
502.8 

340.3 
345.3 
350.9 

22.2 
--------- ­

25.6 

742.9 
734.8 
744.2 

149.1 
158.5 
165.2 

--------- ­
--------- ­
-.-.----- ­

107.2 
78.6 

256.0 

211.4 
4.4 

356.8 

9.0 
-----._--­

12.3 

20.8 
27.3 
83.6 

227.3 
184.0 
207.7 

7.4 
---------­

11.4 
J 752.7 339.0 11.6 694.5 150.0 ---------­ 78.1 156.6 3.9 23.9 110.5 2.8 
E 744.9 347.7 19.7 778.1 158.7 ---------­ 48.7 358.9 4.4 8.5 85.3 4.3 

with a radius of the probable error circle of 12.3 ~b. 

Since the error decreases inversely proportional to the 
square root of the number of observations one should 
expect for 17.5 yr. of data a probable error of 2.95 ~b., 

very close to the value given in table 3. It is also in­
teresting to note that a determination of the lunar tide 
from one day's data could be expected to have a probable 
error of about 230 ~b. 

3. THE SOLAR-DAY OSCILLATIONS 

The harmonic constants for the solar-day oscillations 
with periods of lin mean solar days, n= 1,2,3,4, are given 
in table 5 for the annual means, and for the three seasons 
in the form 

where 8" and 0'" are amplitude and phase constant of the 
nth oscillation, 8", and t mean solar time in hours. Since 
the data had to be grouped according to the lunar phase 
integer for the computation of L 2 the solar-day oscillations 
were determined first for these 12 groups. Table 5 gives 
the mean values of the harmonic constants for these 12 
groups and the radii of the probable error circles for these 
means as computed from the grouping. In the case of the 
solar semidiurnal oscillation the errors computed in this 
manner would be too large because they would contain 
the effect of the lunar tide. The errors given in table 3 
for the lunar tide are actually the residual errors applying 
both to the solar and lunar semidiurnal oscillations. They 
are not repeated in table 5. No errors are given for the 
annual means of the solar oscillations in table 5. They 
are comparable to the errors for the seasonal values. 

The solar 24-hour oscillation 8 1 is known to be irregularly 
distributed over the earth. In table 5 the two stations on 
the island of Puerto Rico show a much smaller amplitude 
than the other stations. The pressure maximum occurs 
about 5:30 a.m. at Balboa, but in general between 6:00 

and 8:00 a.m. at the other stations. An analysis of the 
global distribution of this oscillation (strictly speaking, 
its annual mean) had shown that the worldwide maxi­
mum, freed of local influences, occurs at 5:00 a.m, approxi­
mately [8]. The data of table 5 show a seasonal variation 
of 8 1, but this variation is not uniform. 

The solar semidiurnal oscillation 8 2 shows the well­
known decrease with increasing latitude, although this 
decrease is not quite regular, as shown in table 5 by 
Greensboro in the eastern part of the United States. It 
had already been noted by Spar [12] that the amplitudes 
are large along the east coast of the United States. All 
stations have their minimum amplitude in summer, 
another well-known characteristic of the semidiurnal 
oscillation. 

The main term of the 8-hour solar oscillation 83 is 
characterized by a phase shift of 180° from one solstice to 
the next (for instance, [11]). Since the latitude depend­
ence of the amplitude of 8 3 is mainly proportional to the 
associated Legendre functions P: (",) where", is the lati­
tude, it has its maximum at 30° N. and S. Another term, 
about }~ as large, and without such a pronounced annual 
variation, has its maximum at the equator. Accordingly, 
it is seen in table 5 that the most southerly stations have a 
smaller phase shift from summer to winter than the sta­
tions at higher latitudes. The maximum amplitude oc­
curs during the winter months, another well established 
feature of this oscillation. 

The 6-hour solar oscillation 84 has lately been studied 
by Kertz [9] who combined all the earlier data and com­
puted some additional ones. Its main term is charac­
terized by the associated Legendre function p;, (",) with a 
maximum amplitude around 25° latitude and with a pro­
nounced seasonal variation. The harmonic parameters 
in table 5 show such a strong seasonal variation, and, ex­
cept for Balboa, a maximum amplitude during the D 
months, in agreement with Kertz's result for the term with 
p;, (",) 
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The peculiar phase differences of the solar-day oscilla­
tions at San Juan and Aguadilla have already been Com­
mented on in connection with the lunar tide. 
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Summary. A spherical harmonic analysis of the diurnal surface pressure 
oscillation shows that its main part can be represented by a wave travelling 
westward with the sun. The amplitude of this wave is about half of that of the 
semidiurnal oscillation Ceq. (7)]. For the discussion of the excitation of the 
diurnal oscillation the equivalent depths (Table 4) and Hough functions 
(Table 5, 6) for the three lowest symmetrical modes are computed. There is no 
difficulty in accounting for the smallness of the diurnal oscillation compared to 
the semidiurnal oscillation on the basis of thermal excitation, even if the 
semidiurnal oscillation is not greatly magnified by resonance. 

ZusammenfassUDg. Die spharische harmonische Analyse del' 24stiindigen 
Bodenluftdruckschwankung zeigt, daB ihr Hauptteil durch eine mit del' Sonne 
westwarts wandernde Welle dargestellt werden kann, Die Amplitude diesel' 
Welle ist ungofahr die Halite del' 12stiindigen Schwankung [Gleichung (7)]. 
Zur Diskussion del' thermischen Erregung del' 24stiindigen Schwankung WUI'­

den die aquivalenten 'I'iefen (Tabelle 4) und Hough-Funktionen (Tabellen 5, 6) 
fill' die drei niedrigsten symmetrischen Typen berechnet. Es besteht keine 
Schwierigkeit, auf Grund del' 'I'heorie del' thermischen Erregung zu erklaren, 
warum die 24stiindige Schwankung viel kleiner ist als die 12stiindige, selbst 
wenn die letztere nicht bedeutend durch Resonanz vergrolsort, wird. 

Resume. L'analyse harmonique spherique des variations de pression au 
sol en 24 heures montre que sa partie principale peut etre representee par une 
onde se propageant vel'S l'ouest avec le soleil. L'amplitude de cette onde est 
d'a peu pres Ia moit.ie de la variation en 12 heures [equation (7)]. Pour la 
discussion de la stimulation thermique de la variation en 24 heures, on a 
calcule les depressions equivalentes (tableau 4) ainsi que les Ionctions de Hough 
(tableaux 5 et 6) et cela pour les trois types de symetrie les plus bas. En se 
basant sur la theorie de la stimulation thermique, il n'est pas difficile d'ex-
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pliquer pourquoi les variations en 24 heures sont beaucoup plus faibles que 
ceiles Be produisant en 12 heures, meme si ces dernieres ne sont pas notable­
ment renforcees par des effects de resonance. 

I. Introduction 

The daily! variation of the atmospheric surface pressure when freed 
of the irregular meteorological noise has a pronounced semidiurnal period 
whose amplitude is generally considerably larger than that of the diurnal 
oscillation. Further, the semidiurnal surface pressure oscillation, S2{PO), 
is very uniformly distributed over the earth. In contrast, the diurnal 
pressure oscillation, Sl{PO), shows a rather irregular geographical distri­
bution which is much influenced by topography and surface conditions. 
It is clear that geographically caused phenomena with a daily period such 
as mountain and valley winds or sea and land breezes must have a larger 
effect on the diurnal than on the semidiurnal pressure oscillation. But these 
circulations affect only a relatively small part of the earth and can hardly 
account for the world-wide difference between Sl{PO) and S2{PO), especially 
for the fact that the latter oscillation has a larger amplitude than Sl{PO). 

It is well known that the so-called "resonance theory," first suggested 
by KELVIN [12], attributed the large size of S2{PO) compared to both Sl{PO) 
and the lunar semidiurnal pressure oscillation, to a free period of the ter­
restrial atmosphere which is so close to 12 solar hours that a magnification 
of 60 or more times results. The existence of such a free period seemed 
likely according to theoretical studies (for instance PEKERIS, [16]) as long 
as it could be assumed that the stratopause at about 50 km altitude has a 
temperature of around 3500 K. But rocket measurements have established 
that the temperatures here are much lower than required for strong 
resonance magnification so that the large amplitude of S2{PO) cannot be 
explained in this manner. 

To overcome this difficulty SENand WHITE [20] and SIEBERT [21] have 
pointed out almost simultaneously that earlier theories of the thermal 
excitation of atmospheric oscillations have considered only atmospheric 
heating by turbulent transfer from the ground upward while in fact the 
atmosphere is also heated by direct absorption of incoming solar radiation. 
The latter will affect the whole mass of the atmosphere, not only its lowest 
10 percent or less, as turbulent heat transfer does. In this manner, and 
especially since some of the higher layers of the atmosphere, such as the 

1 The total variation of a meteorological parameter throughout the solar 
day is here referred to as "daily," with its harmonic components a 24-hourly 
or diurnal, 81, 12.hourly or semidiurnal, 8 2, etc. The letter 8 n and its first (or 
only') subscript denote an oscillation which is the nth part of a solar day. 
When required the parameter considered is added in parenthesis. A super­
script indicates the wave number. Thus 81 (Po) stands for that part of the 
solar diurnal pressure oscillation represented by one wave around the earth's 
circumference. The global distribution of such a wave can be expressed by a 
series of associated Legendre functions (or for theoretical considerations more 
appropriately by Hough functions, see Section 4). 

ozone layer considered by BUTLER and SMALL [1], must undergo strong 
daily temperature variations because of their radiative properties, the 
available generating forces are greatly increased. Consequently, the 
resonance magnification required becomes much smaller, and the existence 
of a free period in close proximity to that of the generating force need no 
longer be postulated. 

If this explanation of the semidiurnal oscillation is accepted, the 
smallness of the diurnal oscillation has to be explained, because in the 
daily temperature curve the diurnal harmonic has a considerably larger 
amplitude than the semidiurnal harmonic. Since no systematic study has 
been made of the diurnal pressure wave as a world-wide feature, it has not 
been possible to state just how much larger the semidiurnal planetary 
pressure wave is than the diurnal wave. 

The present paper is anattempt to fill this gap by presenting an ana­
lysis of the geographical distribution of the diurnal surface pressure oscil­
lation and its representation by spherical harmonics, similar to the proce­
dure followed for the semidiurnal pressure oscillation (HAURWITZ [9]). 
This representation of the diurnal pressure wave with its great local 
variations will only give the broadest features of'this oscillation unless 
very many terms in the harmonic series are computed. But a few terms 
should suffice since we are interested here in what may be called the 
"planetary" pattern of the diurnal pressure oscillation, that is the broad 
global features produced by the daily heating and the large-scale distri­
bution of water and land rather than the superimposed local peculiarities. 

It is pertinent to make reference here to a paper by SOLBERO [23] in 
which the quasistatic assumption of the tidal theory is criticized, that is 
the assumption of hydrostatic equilibrium in the vertical. According to 
SOLBERO'S investigation this simplification is at least questionable for 
periods longer than twelve hours. It is beyond the scope of this paper to 
consider this problem, and wherever necessary the results of the quasistatic 
tidal theory will be used here. 

II. Data 

The analysis is based on data largely taken from publications by HANN 
(mainly [5] but also [6, 7,8]). Some stations in northern Europe have been 
studied by SCHOU [18]. A few data for Malaya are given by FROST [4]. 
SELLICK [19] has published some analyses for southern Africa. In a few 
instances more than one analysis result was available for a station. In 
such cases the analysis based on the longer record was always chosen. 
This applies in particular to some Canadian stations for which the diurnal 
pressure oscillation was determined incidentally to a computation of the 
12-hourly lunar air tide by CHAPMAN [2] and to Accra (CHAPMAN [3]). 
Of particular help in filling out a gap over the Northern Atlantic Ocean 
was a paper by ROSENTHAL and BAUM [17] which dealt with weathership 
observations. Unfortunately nothing like this exists over the Pacific 
Ocean. 

25' 
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Any uncertainties in the planetary diurnal pressure oscillations are much 
Because of the nature of the available material the radius of the more likely caused by geographic effects on the oscillations than by too 

probable-error circle, or another statistical measure for the reliability of short a series of data. 
the individual determination of the diurnal pressure waves is not available. Altogether 228 stations are available. Unfortunately, the distribution 
In general, only data based on at least five years' observations have been of these stations is very far from uniform as can be seen from Table 1. 
used, but for some high-latitude stations it was necessary to include 

"0 100tOO 
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Fig. 2. Factor of the sine term of the diurnal pressure oscillation. Unit 10-2 mm Hg
Fig. 1. Factor of the cosine term of the diurnal pressure oscillation. Unit 10-2 mm Hg 

More than half the available stations are situated in middle latitudes of 
results of only one year's observations. Since in the harmonic analysis the the Northern Hemisphere, between 30° and 60° N. Moreover, in this lati­
various latitudes are weighted according to their area, any errors due to tude belt they are mainly concentrated in Europe and North America. 
inaccuracies of the harmonic coefficients for high latitudes will be small. The diurnal pressure oscillation is given in one of the two forms 

(t' = local mean time in degrees) Table 1. Distribution of Stations 
8 1 = a sin (t' + «) = p cos t' + q sin t' (1) 

Latitude No. of Stations Latitude No. of Stations 
For the spherical harmonic analysis the harmonic coefficients p and q have 

0°_10° N 9 0°_10° S 13 to be used. These coefficients were plotted on large-scale maps for each 
10 -20 10 10 -20 23 available station, and isopleths of the p and q were drawn, disregarding 
20 -30 13 20 -30 10 those stations which are clearly disturbed because of their location. These 
30 -40 31 30 -40 9 maps are shown as Fig. 1 and 2. On the original working maps the iso­
40 -50 54 40 -50 1 pleths of p and q are drawn for intervals of 0.1 mm Hg while in the Figures
50 -60 32 50 -60 2 reproduced here an interval 0.2 mm Hg has been used to allow greater
60 -70 11 reduction in size of the Figures. The distribution of the diurnal pressure
70 -90 10 
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oscillation is clearly less regular than that of the semidiurnal oscillation. 
Nevertheless, one can recognize that the diurnal pressure oscillation, by 
and large, decreases polewards from the equator. Also it is very strongly 
influenced by the distribution of water and land, with the land having 
much larger values than the oceans, as expected in view of the similar 
behavior of the diurnal temperature wave. 

400 

e.. 
~ e 
.2 
:::E 

G... 
£ 
Ci. 
E 
« 
c..•

:::E 

I 
300 

200 

I I I 

100 

o 
-7 -6 -5 -4 -3 -2 -I 0 I 2 3 4 5 6 7 8 9 

Wave number, 8 

Fig. 3. Component waves of the diurnal pressure oscillation 

The values of the p and q for grid points 15° of longitude apart, starting 
with the Greenwich meridian and for every tenth degree of colatitude 
extending from 10° to 140° colatitude were read off these maps and used 
for the harmonic analysis. 

III. Harmonic Analysis 

For the representation of the diurnal pressure oscillation we require 
first a development of the harmonic coefficients p and q at a given colati­
tude by trigonometric series in "A, the longitude. Let 

p = ~ (kv cos v "A + l; sin v "A) 
v 

q = ~ (m v cos v "A + n v sin v "A) (2) 
v 

The Diurnal Surfaee·Pl'essure Oscillation 

The integer v goes from zero to 12 in our case since 24 grid points are 

available for each latitude circle. 
If the eq. (2) are substituted into (1) it follows with the introduction 

of Greenwich Mean Time, t, (in degrees), 
t = t'-"A 

and with the aid of some trigonometric formulae that 

81 = %~ {(k - n ) cos [t + (v + 1) "A] + (k. + nv) cos [t - (v -1) "A]vv 
v+ (m'l + 1v) sin [t + (v + 1) "A] + (mv-1.,) sin [t - (v - 1)]\ (3) 

\ as shown by KERTZ [14]. 
\ Thus the wave whichmoves around the earth with the (mean) sun has 

the coefficients k and mo, as is immediately clear from (3). In addition to 
this wave there 

o
may be others with wave numbers different from one . 

Negative wave numbers mean that the wave moves in the direction op­
posite to the sun, from west to east. The reasoa for the appearance of all 
these waves is the influence of the irregular distribution of water and land 
with its effect on the distribution of the diurnal temperature wave. Eq. (3) 
shows that the harmonic coefficients of the various component waves of 
81(PO) can be computed according to the following scheme (afterKERTZ [14]). 

' s 
J<'actor of sin (I + s~) 

"8 

Eactor of cos (I + 8~) 

%(m4- l 4) 
3 %(k4 + n4) 

%(ma-la)
-2 %(ka + na) 

%(m2 -l2)
-1 %(k2 + n2) 

%(ml-h)o %(k 1 + nil 
mo

1 ko 
%(k1-nl) Y2(ml + h)2 
%(k2 -n2) %(m2 + l2)3 

4 %(ka -na) Y2(ma + la) 

With these formulae the cosine and sine factors, Cs and 8s of the dif­
ferent waves have been determined for wave numbers - 7 ~ 8 ~ + 9. In 
order to obtain an estimate of the magnitudes of the component waves of 
81(PO) we have computed the amplitudes for each wave of number 8 and 

0 

for each colatitude &r = 10°,20°, ... , 130°, 140 

[as (&r)]2 = [cs (&r)]2 + [s, (&r)]2 

From these amplitudes for the 14 colatitude circles a mean amplitude lis 

for each wave number 8 was computed by, 
as = {~ as (&r) sin &r} I {~ sin ~r} (4) 

.. 
The factor sin &r has been added here to allow for the areas of the different 
latitude belts. The results of the computation are shown in Fig. 3 where 
the unit of pressure is the microbar, 1 llb = 10-3 mbar . 
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As would be expected the wave with one maximum and minimum 
which moves around the earth with the same speed as the sun has by far 
the largest amplitude. The next largest waves are those with wave num­
bers 2 and - 1. There is also a small standing oscillation, 8 = 0, but it is 
less significant than some of the waves with larger absolute wave numbers. 
Nevertheless, this wave together with the three largest waves 8 = 1,2, - 1 
has been included in the further analysis because of its possible theoretical 
interest. 

The next step in the spherical harmonic analysis is the representation 
of the harmonic coefficients Cs (&) and 8 s (&) by series of associated Legen­
dre functions of appropriate degree 8, 

Cs (9-r)) 2(~Sllsi + i )
 
8 (&r) = ~ glS\ . Pi:i+ i (&r) (5)
 

s t=O sl+ t 

As indicated by (5) only three terms will be used for the representation 
of each component wave. The coefficients f and g are determined by the 
method of least squares, and the data have been, as customary, weighted 
by the factor sin &r to allow for the areas of the different latitude belts. 
Thus it is required that 

M = ~ [cs (&r) - ~::1j:1 (&r) - ~;I +l1j:/ +1 (&r) - ~:I+2 PI:l+ 2 (&r)]2 sin &r 
r 

and a corresponding expression involving 8 s (&r) are made minima by the 
proper choice of the ~l:i+ i and g;:il+i" It must be pointed out that the 
orthogonality of the associated Legendre functions could not be used in 
these calculations because the available data extend only through part of 
the Southern Hemisphere. Consequently if more terms are to be taken in 
the series (5) the earlier coefficients have to be recomputed. 

We shall write 

[I[;\+i cos (t + 8A) + g;:i+i sin (t + 8 A)] Pi:l+ i = 

Bl:\+iPI:I+isin(t+ 8A+ ~1:I+i)' (6) 

The results of the harmonic analysis of the diurnal surface pressure 
oscillation are given in Table 2. 

Table 2 shows like Fig. 3 that despite the great irregularities of the 
geographical distribution of the diurnal pressure oscillation a wave moving 
westward with the sun is clearly predominant. In this oscillation the 
symmetrical terms with Pi and Pg are the largest. Since their phase con­
stants differ by nearly 180° the two terms can be combined as follows 

8i (Po) = 464 (.lob [pi (&) - 0.453 Pg (&)] sin (t + A + 12°) (7) 

which can also be well approximated by 

s{ (Po) = 593 (.lob sin 3 .l} Sill (t + A + 12°) (8) 

I~ 

;1 I 

" ,,J~ 

" 

r
'f 
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As in the case of the semidiurnal pressure oscillation the empirical latitude 
distribution is well represented by the third power of the cosine of.-the 
latitude indicating a rapid decrease of the amplitude with the distance 
from the equator. The amplitude distributions for S} (Po), given by the 
amplitudes and phase constants of Table 2 and by (8) are represented in' 
Fig. 4 by curves 1 and 2, respectively. The crosses indicate the actual 
amplitudes of si (Po) for each tenth degree of latitude. Since the directly 
determined phase angles for 10° and 20° colatitude are 142° and 156°, 
these two values are here shown as negative. Curve 3 will be discussed in 
the next Section. 

Table 2. Harmonic Constants of the Diurnal Surface Pressure Oscillation 

sf (P,) 

Wave Type Isl+i Amplitude 
(microbar) 

IS[.Bjsl+i 
Phase constant 

~Isl
181+ i 
-­

8i (Po) 1 
2 
3 

46'\, 
69 

210 

12° 
321 
195 

8r (Po) 2 
3 
4 

158 
69 

4 

263 
235 
293 

Sol (Po) 1 
2 
3 

19 
134 
40 

279 
109 
174 

8~ (Po) o 
1 
2 

12 
16 
61 

154 
301 
182 

Because of the very irregular geographical distribution of the diurnal 
surface pressure oscillation the expression (7) does, of course, only give a 
very broad picture of the diurnal pressure oscillation. It is of some interest 
to inquire how this large-scale pattern is modified by the additional 
component waves given in Table 2 and by the higher modes which have 
not been computed. 

To obtain a quantitative idea of the difference some numbers have been 
computed which may be called the "errors" of expression (7) and of a 
more complete expression involving all those terms of Table 2 whose 
amplitudes are 40 ub or larger. The latter expression depends, of course, 
not only on colatitude, but also on longitude. Let p and q be the sine and 
cosine factors explained in (1) which are read off from the 336 grid points 
in Fig. 1 and 2 and which were used for the harmonic analysis along 
latitude circles. Let further p* and q* be the same quantities, but com­
puted from (7) for the same grid points. Finally, let p and qbe these same 
coefficients, but computed from the more complete expressions for the 
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diurnal pressure wave when all terms indicated in Table 2 with amplitudes 
~ 40 [Lb are used. The following two quantities have been computed 

1: r(~ ~::J~~~j-Jq - q*~:lY:. = 248 [Lb 

336L n _ 
and 

~ rLP-=]Jl~:±-J!=-q)21Y:.= 209 [Lb. 

336L n 

Both figures show first of all that the theoretical expressions obtained 
by harmonic analyses do not reproduce the details of the geographical 
distribution very well. The shorter waves with higher wave numbers not 
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Fig. 4. The amplitude of the main part of the diurnal pressure oscillation as a 
function of the colatitude. Crosses: Amplitudes determined from the data. Curve 1: 
Distribution given by the first three associated Legendre functions of order 1. 
Curve 2: Distribution given by sin3 .&. Curve 3: Distribution given by the first 

three symmetrical Hough functions 

considered in the calculations leading to Table 2 which appear because of 
the geographical irregularities and which may be regarded as "noise" 
superimposed on the planetary diurnal pressure oscillation, contribute an 
appreciable fraction of the total energy. Our aim here is to obtain an 
expression for the main, planetary part of the diurnal pressure wave, 
rather than a formula giving the fine details of its geographical distri­
bution. For this purpose it is important that the more complicated ex-

The Diurnal Surface-Pressure Oscillation 

pression involving 8 terms of Table 2 does not give a substantially smaller 
"error" than the simple expression (7). The latter, or even (8), may there­
fore be regarded as representing the main part of the planetary diurnal 
pressure wave. 

IV. Discussion 

Since the diurnal pressure wave is excited by the diurnal temperature 
wave, the two waves must be compared with each other. But for the 
diurnal temperature wave, only the largest component, 81 (To), that is the 
wave migrating with the same speed as the sun, has been analyzed. One 
of these analyses (HAURWITZ [10]) is partly based on empirical data. The 
theoretical analysis by KERTZ [13] takes into account the effects of turbu­
lent mass exchange and of radiation while that by SIEBERT considers only 
the temperature changes due to absorption of solar radiation. The coef­
ficients given in these three papers are reproduced in Table 3. Since the 
analysis of the empirical data is based on annual mean values only the 
values for the equinoxes computed by KERTZ and SIEBERT [22] are given 
here. 

Only the first three harmonic terms are shown. Since the second terms 
are quite large unless radiation only is considered, and since P~ is asym­
metrical with respect to the equator the temperature wave is much less 

Table 3. Harmonic Coeiiicients of the DIurnal Surface Temperature Wave 

HAURWITZ KERTZ SIEBERT 

Wave Type 181 + i Amp!. Phase const, Amp!. Phase const, Amp!. Phase const, 

1 1.007 0 C 2320 0.7480 C 2250 0.158 0 C 180 0 

S1 (To) 2 0.647 232 0.439 225 
3 0.502 238 0.083 225 0.020 0 

symmetrical with respect to the equator than the pressure wave. As shown 
by LAPLACE (see for instance LAMB [15]) no changes in the elevation of 
the free surface of an ocean of uniform depth covering the whole earth will 
occur if the generating force is of the form P~ (&). We may therefore sur­
mise that the corresponding term in the diurnal temperature oscillation 
will not cause an appreciable pressure oscillation of this form. 

For a comparison between the forcing function, that is the temperature 
wave and the resulting pressure oscillation, one should use the temperature 
oscillation throughout the whole atmosphere rather than that at the earth's 
surface. But only the latter has been analyzed and must therefore be used 
here. It can be expected that the distribution of 81 (T) in the higher atmos­
phere is less influenced by the small-scale geographic features than at 
the ground. Hence, the sum of the lowest-degree Legendre functions 
should give a better approximation to the diurnal temperature wave 
for the whole atmosphere than to 8 1 (To). 

The associated Legendre functions used here to describe the latitudinal 
variations of the diurnal pressure oscillation are not suitable for the com­
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parison between forcing function and resulting oscillation. The dependence 
of the oscillation on the latitude is described by Laplace's tidal equation. 
The solutions of this equation are given by "Hough" functions, named 
after HOUGH [11] who studied this equation extensively. These functions 
are most easily expressed in series of associated Legendre functions because 
for many of the important oscillations the difference between the Hough 
functions and the corresponding associated Legendre function is quite 
insignificant (as long as the depth of the equivalent ocean is not too small). 

However, for the diurnal oscillations of the atmosphere the equivalent 
depths are small so that the series of associated Legendre functions ex­
pressing the Hough functions converge very slowly. The three largest 
equivalent depths belonging to diurnal oscillations symmetrical to the 
equator, h}, h!3, h! and the corresponding Hough functions have been 
computed. In these computations the small difference between the length 
of the solar day and of the sidereal day can be neglected. The relevant 
parameter in Laplace's tidal equation is actually N i = g hkJ4 cu2 a2 

where g is the acceleration of gravity at the surface, co the angular velocity 
of rotation, a is the radius of the rotating sphere. In the case of the earth 

Nt = 11.35· 10-6 hi 

where hl is expressed in meters. The values for the three highest symme­
trical modes are shown in Table 4. 

Table 4. Equivalent Depths for the Diurnal Oscillation 

t 3 

Nl 0.7930 . 10-2 0.1380· 10-2 0.0555 . 10-2
hl 699m I 122 m 48.9m 

1 W. KERTZ found earlier 634 m for this value (see SIEBERT [22]), but he has informed that the
larger value given here Is correct. 

The Hough functions are given in the form 
ce 

1 \'1 1 1ot =.t..J d ti Pi (&) (9)
i=l 

where P~ (&) is the seminormalized associated Legendre function for which 
" 
2 

Jp~ (&) 2 Sin & d & = 2.
4 

1 (m2 1).. ~+-
It 

2 

The coefficients dfi are given in Table 5. The arbitrary constant is 
chosen so that the coefficient dli = 1. The convergence of the series, espe­
cially that for 0! is poor, even if it is remembered that for the semi­
normalized Legendre functions the quadratic mean value decreases with 
increasing i. 
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Table 5. 
Coeijicients of the Symmetrical Hough Functions for the Diurnal Oecillation» 

e1 = rd1· p~ (3-)i ,t 1.
 

i/t 1 3 5
 

1 1 - .3073 .827+ 
3 - 3.4422 1 2.671 
5 + 4.1748 - .4733 1 
7 - 2.6256 --- 2.2338 6.508+ 
9 + 1.0200 + 5.3936 - 13.140 

11 .2694 - 6.6915 9.084+ 
13 .0515 + 5.7104 7.143+ + 
15 - .0074 - 3.6884 - 26.676 
17 .0008 + 1.8931 + 38.806+ 
19 .00008 .7958 -- 39.324 
21 .2798 + 31.333+ 
23 .083.t --- 20.652 
25 .0206 + 11.565+ 
27 - 5.536 
29 2.097+ 
, More complete and accurate values of these coefficients have been computed by Mr. THOM.\S 

FLATTERY of the Department of the Geophysical Sciences of the University of Chicago. 

Table 6. Symmetric Hough Functions of Order 1 

e 1 
1 

0° 0 
5 -.00190 

10 -.00479 
15 -.01012 
20 -.02027 
25 -.03918 
30 -- .07267 
35 -_..12797 
40 - .21133 
45 -.32244 
50 - .44609 
55 -.54414 
60 -.55531 
65 - .41153 
70 -.07264 
75 .43355 
80 .99329 
85 1.43554 
90 1.60405 

I'll I'll 
3 5 

0 0 180 0 

.00034 .00599 175
 
-.00023 --.00518 170
 
-.00000 .00323 165
 

.00006 -- .00359 160 
-.00001 .00067 155
 

.00125 -.00093 150
 

.00512 -.00231 145
 
,~.01999 .00003 140
 

.06423 -.01966 135
 

.16339 -.06704 130
 

.31347 -.22169 125
 

.39163 -.33159 120
 

.14727 .02675 115
 
- .50711 .82616 110 

- 1.06616 .49917 105 
-.71546 - .88817 100 

.45771 -.25076 95 
1.13620 1.00270 90 
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For the subsequent numerical calculations it is more convenient to 
choose the arbitrary constant so that the largest coefficient in the series 
becomes unity. Accordingly 0} has been divided by dL5' 0A by the abso­
lute value of d~,II' 0! by the absolute value of dl,In" The numerical 
values of 0/c reduced in this manner are reproduced in Table 6 for intervals 
of 5° colatitude and are plotted in Fig. 5. With the new choice of the arbi­
trary constants all three Hough functions are similar in magnitude. Both 
Table 6 and Fig. 5 show that the functions are large only in a belt of 60° 

ell -­

e~ -- -­
e~ ..
 

Fig. 5. The first three symmetrical Hough functions. (The arbitrary constant has 
been chosen so that the largest factor in the series of associated Legendre 

functions is one) 

width centered at the equator and that the higher modes oscillate strongly. 
As will be seen and as might be expected this behavior makes them not 
very suitable for a representation of the observed data. The values of 
01 for the higher modes are given to a greater degree of accuracy than 
warranted by the computed series (Table 5) in order to facilitate correc­
tions by extending these series. The coefficients for the development of 
sl (Po) in terms of the first three symmetrical Hough functions have been 
determined by the method of least squares directly from the harmonic 
coefficients c and 8, explained in the scheme at the beginning of Section 3. 
As in the computation of the coefficients f and g in (5) a weighting factor 
sin &r has been used to allow for the reduction in area of the latitude belts 

) 90 120 150 
COLATITUDE 
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polewards. But as in Section 3, despite the orthogonality of the Hough 
functions, the earlier coefficients in the series of Hough functions would 
have to be recomputed if more terms are taken since the data available 
here extend only to 140° colatitude. 

The terms in the series of Hough functions representing Sl (Po) may 
be written in either of the two forms 

[Uk cos (t + A) + Vk sin (t + A)] 0i (&) = W k sin (t + A + 'ilk) 01 (&). (10) 

The constants Uk, Vk, W k , and 'ilkare shown in Table 7. The angle 'ilkfor all 
three terms considered here is very similar either to 20.4°, its value for the 
leading term, of to '180° + 20.4 0. One may therefore write. 

sl (Po) = {[248 61-117 6g + 56 6A] sin (t + A + 20.4°).
+ [7 6~ - 2 6A] cos (t + A + 20.4°)}[Lb (11) 

where the cosine term can clearly be omitted. Tlte phase angle is here 8° 
larger than in the previous expressions for S} (Po), (7) and (8), so that the 
maximum would occur only about half an hour earlier than according to 
(7) or (8). 

The latitude distribution of the amplitude of sl (Po) according to (11) 
is shown in Fig. 4 as curve 3. It gives only a poor approximation. Even 
in the equatorial zone the amplitudes are only about half of those deter­
mined by harmonic analysis along latitude circles. Nevertheless, an 
attempt will be made to compare the coefficient for sl (Po) given in Table 7 

Table 7. Representation of 81 (Po) and 81 (To) by Hough Functions 

k Uk vk Wk 'Pk tk 

HAURWITZ SIEBERT 

1 86 fl-b 232 fl-b 248 fl-b 20,4° 0.098° C 0.064°C 
3 -34 -112 117 196.9 - 0.047 - 0.027 
5 18 53 56 J8.7 0.037 0.015 

with theoretical estimates. For this purpose the temperature wave sl (T) 
has to be known as a series of Hough functions. Since we are here concerned 
only with the part of the diurnal pressure oscillation symmetrical to the 
equator, only the symmetrical terms of the temperature series are conside­
red, that is the terms with P1 (&) and P~ (&), given in Table 3. If this 
part of the temperature series is expressed by the first three symmetrical 
Hough functions the coefficients fk in Table 7 are obtained in the same 
manner as the coefficients for the pressure series, after the temperature 
amplitudes for each tenth degree of colatitude have been computed from 
the data in Table 3. The first set offk has been determined from the semi­
empirical values of Haurwitz, the other from Siebert's values. Because of 
the form of the functions 61 the difference between the two sets of fk is 
much smaller than might be expected from Table 3. 
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To obtain an estimate of the theoretical response of the atmosphere 
to the modes of the temperature oscillation given in Table 7 some formulae 
given by SIEBERT [22] can be used. Although these formulae are derived 
under various simplifying assumptions they will at least give approxi­
mately the response of the atmosphere to the temperature oscillation. 
It is assumed here that the atmosphere is isothermal because the somewhat 
more realistic temperature distribution considered by SIEBERT with a 
temperature gradient decreasing to zero does not give substantially diffe­
rent results. The following notations are used: 

hn equivalent depth of vibration of mode n 
x = 2/7 
H scale height, assumed constant and equal to 8.2 km 
bn = - [(4 x H/hn) - 1]Y. 
po = 1000 mb, To = 280 K, mean surface pressure and temperature 
?> Pn (0), 't'n (0) change of surface pressure and temperature due to the 
nth mode 
K coefficient of turbulent mass exchange, assumed equal to 104 cm2/sec 

k = 1/3, coefficient to allow for absorption of solar radiation 
a = frequency of oscillation 
Then, if the daily temperature wave is due to direct absorption 

_ __ Po H i; (1 + 2 k -::-bn) 't'n (Ot_____ 12 
?>pn (0) - To [2H -hn (1 + bn}] [(1 + k) khn + xH] () 

If the daily temperature wave is largely due to heat transport upward one 
has to put in this formula 

k=H(~)Y.ei~4 (13)K 

as shown by SIEBERT. If only eddy transfer is considered one obtains for 
the lowest mode IH a pressure variation which is about 50 times too small 
with the larger value of /1. This result merely confirms the conclusion of 
SIEBERT [22] and others that the solar oscillations of the atmosphere 
must largely be due not to the heat wave propagated upward by eddy 
conductivity, but due to direct absorption of solar radiation. 

M. SIEBERT has suggested to me that when determining the effect of 
the diurnal heat wave caused by solar radiation alone on the diurnal 
pressure wave the values /k computed from the results of his theoretical 
studies should be chosen because those obtained from my empirical in­
vestigation contain the effects of turbulent transfer and radiation which 
both affect the temperature in the lowest layer. In the following the values 
of I» determined from SIEBERT'S computations will therefore be used. 
With eq. (12) it is found that corresponding to the Wk of Table 7 

I ?> PI (0) I = 140 fLb (220 fLb)
 
I ~ pa (0) I = 25 fLb (44 fLb)

I ?> PS (0) I = 15 fLb (21 fLb).
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In parentheses the amplitudes computed from (12) with the other set of 
fk values are shown merely for comparison. In contrast to the semidiurnal 
oscillation the diurnal pressure oscillation produced by the corresponding 
temperature wave is very small, although it is ten times larger than the 
value found by BUTLER and SMALL [1] for?>PI (0) as the effect of the diur­
nal temperature wave in the ozone layer alone, without the effect of ab­
sorption of solar radiation by water vapor in the lower layers. 

Before the significance of the results for the theory of the thermal 
excitation of the atmospheric tides is discussed in the next Section the 
phase constant may be briefly considered. According to SIEBERT the phase 
constant of the leading term in the series for the temperature wave is 180° 
(see Table 3 above). The minus sign in (12) shows that the phase constant 
of the corresponding pressure oscillation mode should be zero giving a 
pressure maximum at 6 a. m. Since phase angle CPI derived from the data 
(see Table 7 or [11]) is 20.4° the pressure maximum occurs actually 1.4 
hours earlier. The difference may be partly du'e to the inaccuray of the 
data. It may in part also be caused by the highly simplified calculations 
of SIEBERT which consider only the effect of absorption, but not of emission 
of radiation. Because of the latter the temperature will no longer have its 
maximum at 6 p. m. (phase angle 180°) when the solar energy becomes 
zero, but earlier namely when the energy radiated by the atmosphere 
equals the absorbed energy. Thus, the phase constant of the temperature 
wave will be larger than 180°, and consequently that of the pressure wave 
larger than zero. 

v. Conclusion 

One of the main problems of atmospheric tidal theory is to explain 
the small size of SI (Po) as compared to S2 (Po). In the absence of large 
resonance magnification, thermal rather than gravitational excitation 
must account for both oscillations. But the diurnal temperature wave is 
about 2.5 stronger than the semidiurnal component. Our spherical har­
monic analysis has shown that the predominant component of st (Po) 
amounts in fact to half of S2 (Po) so that the difference in size of the two 
oscillations is not as large as is often believed. The amplitude factor of 
6t in (11), the largest term in the expression for st (Po) in a series of Hough 
functions, is about 70 percent larger than the theoretical estimate based 
on (12), as shown in the preceding Section. Because of the inadequacy of 
the empirial data for st (Po) this must be considered quite fair agreement 
between observation and the theory of thermal excitation. The tempera­
ture amplitude for the mode 6t is very small, according to Table 7, because 
the form of the function 61 (&) with its small equivalent depth differs 
greatly from the latitudinal distribution of the diurnal temperature 
wave. It must be partly due to this fact that the corresponding mode of 
the diurnal pressure wave is also small. For the semidiurnal solar tide with 
its eleven times larger equivalent depth, the relevant Hough function 
O~ (&) is very similar to the corresponding associated Legendre function 
p~ (&) whose factor is 0.32° C (l!AURWITZ [10]). Hence, the amplitude 
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of the exciting semidiurnal temperature wave is in fact considerably 
larger than that for 6l. In other words, the geographical distribution of 
the semidiurnal temperature wave is such that it is much more effective 
in producing a corresponding pressure oscillation than the diurnal tempera. 
ture wave. This had already been surmised by SIEBERT [22] before the 
form of 6t (-It) was known, when he suggested that the diurnal pressure 
oscillation is suppressed in the atmosphere. 

Further, because of the small equivalent depth of the mode 6l the 
corresponding pressure oscillation would be smaller than the semidiurnal 
oscillation even if the two exciting temperature waves were equal in 
magnitude. One finds from (12), since the equivalent depth of the semi­
diurnal oscillation h2 = 7.85 km, that aP2 (0) should be about three times 
larger than aPI (0) if the two temperature amplitudes were equal. Without 
carrying this discussion any further, it is thus clear that there is no diffi­
culty in explaining the smaller magnitude of 8 1 (Po) than of 8 2 (Po), and 
that thermal excitation provides not only a satisfactory explanation of 
the observed magnitude of the semidiurnal pressure oscillation, but also 
of the smallness of the diurnal oscillation. 
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Atmospheric Tides 

These oscillations are caused by the gravitational 
pull of sun and moon and by the sun's thermal effects. 

The term atmospheric tides refers 
not only to the atmospheric oscillations 
produced by the gravitational forces of 
the moon and the sun but also to the 
oscillations due to the sun's thermal 
effects on the earth's atmosphere. This 
dual meaning is theoretically appropri­
ate, since both gravitational forces and 
thermal effects induce oscillations 
which are gravity waves. Also, it is 
necessary for practical reasons to con­
sider these two effects together, since 
one cannot separate them in the case 
of the oscillation of 12-hour period 
which appears both in the sun's tide­
producing gravitational attraction and 
in the thermal influence of the sun on 
the atmosphere. 

Barograph traces at the earth's sur­
face show that in tropical regions the 
pressure has two maxima and two 
minima per day, the maxima occurring 
at about 10 a.m. and 10 p.m. local 
mean time, the minima occurring, re­
spectively, 6 hours later. The amplitude 
of these oscillations is about 1 millibar 
(1). Figure 1 shows the hourly values 
for barometric pressure for a week at 
Balboa, Panama. At higher latitudes 
the nonperiodic pressure changes due 
to the passage of weather systems are 
very much larger than they are in the 
tropics and mask, in general, the 12­
hourly oscillation. To find this oscil1a­
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tion a statistical investigation is re­
quired, based on a sufficiently long 
record to permit elimination of the ir­
regular pressure changes. 

Figure 1 shows clearly that the pres­
sure oscillation has a period of half 
a solar day (12 hours), rather than of 
half a lunar day (12 hours 26 minutes). 
On the other hand, the gravitational 
tidal force of the moon is 2.2 times 
that of the sun. Therefore, one of the 
main problems of the theory of atmo­
spheric tides is the need to explain why 
the solar tide is so much stronger than 
the lunar tide in the atmosphere. 
Laplace suggested early in the 19th 
century that the solar tide might be 
caused by the thermal rather than the 
gravitational action of the sun on the 
atmosphere. The daily temperature 
curve is not a pure sine wave; it con­
tains, in addition to the 24-hourly 
oscillation, oscillations of higher fre­
quencies-in particular, an oscillation 
of 12-hour period, discussed later. The 
amplitude of the 12-hourly tempera­
ture wave is smaller than that of the 
24-hourly temperature wave, hence it 
becomes necessary to explain why the 
amplitude of the 12-hourly pressure 
wave is greater than that of the 24­
hourly pressure wave. Kelvin (2) con­
jectured that the atmosphere may have 
a free oscillation of period of about 
12 hours, and that the 12-hourly oscil­
lation (but not the 24-hourly oscilla­
tion) is thus magnified through reso­
nance. This suggestion is now generally 

referred to as the "resonance theory" 
of the semidiurnal pressure oscillation. 
Later I describe this theory and its de­
velopment and modification in detail, 
but first it is necessary to discuss the 
observational information available on 
the atmospheric tides. This discussion 
is confined largely to the tidal variation 
of meteorological parameters, especial­
ly of pressure and wind. Only oc­
casionally do I refer to the tidal varia­
tions of geomagnetic and ionospheric 
parameters. 

For conciseness and clarity the nota­
tions L« and S" are used in the discus­
sion of lunar and solar variations of 
geophysical parameters. The subscript 
n indicates that the period referred to 
is the nth part of the (lunar or solar) 
day. Where necessary, the parameter 
under discussion is shown in paren­
thesis. For instance, S,( po) denotes the 
solar semidiurnal oscillation of the sea­
level barometric pressure po. 

The Lunar Atmospheric Tide 

Although the lunar atmospheric 
tide L, is about 15 times smaller than 
the solar atmospheric tide S" it can 
nevertheless be found, by means of 
statistical methods, from long series 
of data (3). The results of a determi­
nation of the lunar tide (and, with ap­
propriate changes, of the solar tide) 
are customarily expressed in the form 
of a sine wave 

L; = An sin (15 nT + an) 0) 

where n is the fraction of the day, T is 
the local lunar mean time (in hours), 
An is the amplitude, and an is the 
phase constant of the oscillation. In 
the case of the lunar tide only the 
semidiurnal oscillation (n = 2) has 
been found so far in meteorological 
variables, whereas in the case of the 
solar tide, S" S" S3, and S, have been 
determined. From the phase angle an 
the time of the maximum can readily 
be obtained, since the argument of the 
sine must then be 90 degrees. For ex­
ample, the annual mean value for the 
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Fig. 1. Surface barometric pressure at Bulboa. Panama, from I to 7 January 1952. 
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lunar tide in the barometric pressure 
p; at sea level at Balboa, Panama, as 
determined from data for 17.5 years, is 

L 2(p o) = 
58.3 • 10-3 mb sin (30 T + 77.0°), (2) 

hence the maximum occurs about half 
an hour after the moon passes the local 
meridian. This variation due to the 
lunar tide is illustrated in Fig. 2 (left). 
The two numbers characterizing the 
oscillation are the amplitude and the 
phase angle. These, and therefore the 
whole oscillation, can be represented 
more concisely in a polar diagram, 
where the distance from the center 0 
represents the amplitude, and where the 
phase constant is plotted so that the 
time of the maximum can be read off 
the diagram directly. Figure 2 (right) 
is a polar diagram for L2(pO) at Balboa, 
the annual mean being represented by 
point A. (Because all plotted points lie 
in one quadrant, only this quadrant is 
shown.) The direction of the line OA 
shows the phase constant, in degrees 
(outer scale at the circumference) and 
as the time of the maximum (inner 
scale). Since, for a 12-hourly oscilla­
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tion, this type of figure is similar to a 
clock face, it is called a "harmonic 
dial." 

Because long series of data are re­
quired for finding the variation in at­
mospheric pressure caused by the lunar 
tide, this variation has so far been de­
termined at only about 70 stations. The 
determinations have been mainly the 
work of S. Chapman (4). Figure 3, 
which is largely based on Chapman's 
results, shows the global distribution of 
the amplitude of this tide. The ampli­
tude decreases from the equator pole­
ward, as would be expected, since the 
lunar tidal force decreases toward the 
poles. In general, the high tide occurs 
about 112 to 1 hour after passage of 
the moon through the local meridian. 
But there are, despite the regular dis­
tribution of the lunar tidal force. some 
very striking irregularities in the dis­
tribution of the lunar atmospheric tide. 
One of these is the smallness of ~he 

lunar tide on the Pacific coast of North 
America, presumably due to the ob­
structing effects of the mountains on 
the westward progression of the tide. 
Another irregularity is the asymmetry 

90° 
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Fig. 2. The lunar tide in the earth's atmosphere at Balboa, Pan­
ama, as determined from data accumulated over 17.5 years. 
(Left above) Variation of pressure at the earth's surface due to 
the lunar tide. (Right) Harmonic dial showing seasonal variation: 
(1) summer months; (D) winter months; (E) equinoctial months; 
(A) annual mean. 

of the amplitude with respect to the 
earth's equator; there are large ampli­
tudes over the eastern part of Africa 
south of the equator and over the 
western part of Indonesia. No explana­
tion of this phenomenon has yet been 
proposed. 

If we group the months into three 
"seasons," designated D (November, 
December, January, February), E (for 
Equinoctial) (March, April, Septem­
ber, October), and J (May, June, July, 
August), we obtain for Balboa (Fig. 2, 
right) the three points J, E, and D, 
which are connected by straight lines 
indicating a pronounced seasonal vari­
ation. The circles around these points 
are probable-error circles (3) of L2(pO) 
for each season. A determination of 
such oscillations cannot be considered 
satisfactory if the radius of the prob­
able-error circle is more than one-third 
the amplitude. The determinations of 
Fig. 2 (right) are clearly satisfactory. 
The seasonal variation for Balboa is 
fairly typical: largest amplitudes around 
the June solstice, smallest amplitudes 
around the December solstice. Con­
trary to many meterological variables 
with a seasonal period, the maxima 
and minima for L, occur at the same 
time of the year, rather than with op­
posite phases, in the Northern and 
Southern hemispheres. Since the lunar 
tidal force has no seasonal variation, 
the cause of the seasonal variation of 
the lunar atmospheric tide must be 
sought in the varying response of the 
atmosphere to this force. But no satis­
factory explanation has as yet been of­
fered. An understanding of the appar­
ently anomalous responses of the 
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analysis of all the available data, the July and mirumum amplitude at about tides. At the surface, the effects of this 
following approximate expression is ob­ the time of the equinoxes; this cor­ current are observed as the daily varia­
tained responds to the seasonal variation of tions of the geomagnetic parameters. 

the 8-hourly temperature variation. S. Direct evidence of the tides in the 
S,(p .. = 0.59 mb cos' '" sin (I + 12°) (4) is even smaller than S" but it also has high atmosphere has been obtained only 
where the meaning of the symbols is a fairly regular distribution over the fairly recently, through observation, by 
the same as in Eq. 3. The magnitude earth, and this makes it interesting from means of radio techniques, of the drift 
of this oscillation is thus about half the standpoint of theory. of meteor trails. When a meteor pene­
that of the semidiurnal oscillation, and trates the atmosphere down to a level 
its maximum occurs shortly after 5 a.m. of about 80 to 100 kilometers it pro­
local mean time. S, and S2 undergo Atmospheric Tides at Higher Levels duces an ionized trail during its dis­
seasonal variation. Even for S. these integration as it collides with the air 
variations differ greatly at different sta­ '['he tidal oscillations near the earth's molecules. This trail drifts along with 
tions. surface are very small as compared to the air. Radio signals are reflected 

The higher harmonics, S3 and S" as the mean for low levels of the atmo­ from these meteor trails, and the 
well as the standing component of S2, sphere; the oscillations are very much radial-drift velocity, with respect to the 
can be produced only by the thermal larger at high levels. The first, indirect, observer, can be found by means of 
action of the sun, since the sun's tide­ evidence of the importance of the at­ Doppler techniques. The wind velocity 
producing gravitational force does not mospheric tides at great heights was can be determined from these radial 
contain any corresponding terms. S, is furnished by the daily variations (ac­ velocities, because in a reasonably short 
considerably smaller than S, and S2. Its cording to both solar and lunar time) time a sufficient number of radio 
maximum amplitude of about 0.'2 mb of the geomagnetic parameters. An ex­ meteor echoes from different directions 
occurs at about 30 0 north and 30° planation of these variations is given by can be observed to compute this veloc­
south latitude. Despite its smallness it the "dynamo" theory. According to this ity. 
is very regularly distributed over the theory a current is induced in the Such data have, so far, been ob­
globe. An interesting feature of S, is ionized layers of the high atmosphere tained mainly at two stations-at Jod­
its pronounced seasonal variation with when they are moving in the geomag­ rell Bank, near Manchester, England. 
phase reversals between January and netic field because of the atmospheric and at Adelaide, Australia. The Jodrell 

1\..l00 llOo 140 0 '60 0 180 0 160 0 e ,M. BO' 6 • 4 • 2 • O' 20 • 40 • 60 • BO' 

~'~ 
'4 • 

I', 1/h~) Ir\ --+ ~< [,~101.I~,~!. Ieo Be' 
~ 

~r 'l'j)V c 

.n~~'<~I)~ i~
('(:!\~~'~,~JZ[ ~1i1:~,\ {\;~"'- ~
 

V 
).". .~

71J" 

"··1, (I \l~ , ; ~ //7Jy
;0 '"'~r .'1 ~t~\'h~' 

I 

(...,"', J
~!)., dO() /10 5"" /1;.... , " n 

0 "./" ''\.''0 I) \k---r 
I

,.Y' v~'"I..,r-- ­ "20 1-<11 I;'
'( ,", I I ~" -- ~ , I ~~~ , 20 

I !~ ' .\ I I - ) ! -. -' 1'" " , f -4- ! 

' " 
.> I I '" I '-.,:, ~ ',N40 rit..? I I I ' . :,,'\ 'L 

,.., 
4100 . -i-I 40 

4o' , - 50I"v , ~ < ~ 

_______ f" 

" , \"­
70 

I",,, .. - .- .:..,;;..... . - .. - - - - - - - - . -' . 
------Y20 0 

70 
.~ 

"110 

n20 

I 80 

60 

, 40 

20 

2 

I~
 '//
1 
}\-J '~ ~I~ 

~ 1'7~; I , '"-r-T /'
I 

/..... ­~ ..... ' I o' 
120 

0° 
J 

~ ., ~. '\ I, 
,~ ",I10 0 

2o'20 0 

- - \--1I1ln 
. 

! \ /
 

60
 - . 40'410· ,
',;' ,40 

J.--­ --- j,.,.. ­

20 ~ 
~I- ­

10 6'0· VV-........
 VV10·~IC 10
 
70'
 7.c...- e. .'00 '20 

. '80. '60 . '40. ,'20. .00 80 60 40 20 o 20. 40• 60 80'40 0 '60 

~ ~ 

I 

I 120"::::: r.---T'-,) 

L: I D 
-, 

" " ! 

t. 

J r---r ­- I-.... 
V .............. 

<, 
10. . . . . 

J--- 10 

t
j 

, 

I~f ,k"c[/\ "'--\ " 

/ f~~PI 
~'~j 

60°"""';10 

Fig. 4. Lines of equal amplitude for the semidiurnal solar tide as manifested in atmospheric pressure at the earth's surface (see 16). 
The amplitude is given in units of 10. 2 millibar. 
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Bank data were obtained by Greenhow 
and Neufeld; the Adelaide data, by El­
ford (6). The data show that the am­
plitudes of the periodic variations of 
the wind components, both S, and S" 
are similar in magnitude to the daily 
mean wind, and that in both cases the 
amplitudes are about 100 times greater 
in the high atmosphere than at the 
ground. The behavior of the periodic 
part of the wind is illustrated in Fig. 6. 
Here the speed and direction of the 
wind are plotted as hodographs, which 
show the end point of the periodic wind 
vector S, + S2 for the D months. The 
numbers from 0 to 22 adjoining the 
marked points on the hodograph curve 
give every second hour in local mean 
time. Thus, in Fig. 6 (left) for Jodrell 
Bank, the wind at local midnight (0 
hours) blows nearly toward south (a 
"north wind" in meteorological and 
everyday terminology) with a speed of 
about 16 meters per second. The wind 
vector turns clockwise and describes 
two complete rotations during 24 hours, 
demonstrating the presence of the semi-

diurnal oscillation. Because the 24­
hourly oscillation is superposed, the 
two circuits do not coincide. At Ade­
laide (Fig. 6, right) the wind vector 
turns counterclockwise, as it should in 
the Southern Hemisphere. The hodo­
graph curve does not show two com­
plete loops, because here Si has a larger 
amplitude than S2. It is impossible to 
say, on the basis of presently available 
data, whether in general S2 or S, is 
larger at these high altitudes, or whether 
systematic regional differences exist. 
The amplitudes and phase constants of 
both S, and S2 undergo large seasonal 
variation, very much larger at these 
high levels than at the earth's surface. 

The oscillation also changes with 
elevation, the amplitude increasing, and 
the time of the maximum being de­
layed, with ascent from 80 to 100 
kilometers. But the observations are not 
yet numerous enough to provide a 
basis for reliable quantitative deter­
minations. 

Unfortunately, very few data are 
available for the layers intermediate 

between the surface level and the 
meteor levels (80-to 100 km). Harris 
et al. (7) have published data on the 
diurnal and semidiurnal pressure and 
wind oscillations for Lajes Field at 
Terceira, Azores, based on balloon ob­
servations. These data are for levels 
lower than 30 kilometers. Up to this 
altitude no very pronounced vertical 
changes in Sl and S, are found. 

Like the solar' tide the lunar tide 
must increase with elevation. But the 
data are not sufficient for determining 
it at meteor levels. One can only say 
that the winds due to the lunar tide 
must be less than 2 meters per second. 
At the surface the lunar tidal winds 
have a velocity about 100 times less 
than this value. Higher up, in the iono­
sphere, the lunar tidal oscillation can 
clearly be seen in various observable 
quantities, such as the geomagnetic 
parameters referred to earlier (8). The 
lunar oscillation has also been dem­
onstrated to exist in other parameters. 
such as the virtual height of the E 
layer. 
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Daily Temperature Variation 

As I have explained, the solar tidal 
oscillations, including S2, are probably 
due to the thermal rather than the 
gravitational action of the sun on the 
atmosphere. Therefore, let us consider 
at this point, as a manifestation of this 
thermal action of the sun, the' daily 
temperature curve with its various har­
monics, in order to understand how this 
daily temperature wave can produce a 
semidiurnal effect. 

The solid curve of Fig. 7 shows, as a 
typical example, the daily variation in 
air temperature near the ground at 
Potsdam, Germany, during February; 
it is based on the average for data ac­
cumulated over 60 years. The tempera­
ture rises sharply from a minimum at 
about sunrise (about 7 a.m.) to a maxi­
mum at about 2 p.m, From there it 
decreases, first rapidly, then, especially 
after sunset (about 5 p.m.), much 
more gradually to its minimum. Thus, 
the diurnal temperature curve is not a 
simple sine curve with a 24-hour period 
but is asymmetrical. This asymmetry is 
due to the different processes determin­
ing the warming and cooling of the 
atmosphere. During the daytime the 
amount of radiative energy received de­

pends largely on the altitude of the 
sun above the horizon, which follows, 
very approximately, a sine function; 
after sunset this energy flux is zero. The 
heat loss due to radiation is fairly con­
stant throughout the day and night, so 
it is only throughout the daylight hours 
that the temperature curve can be ex­
pected to have a form approximating a 
sine curve. The sine curve with 24-hour 

period which gives the best fit (within 
the meaning of the method of least 
squares, the curve being obtained by 
harmonic analysis) is shown by the 
dashed curve (to which the daily mean 
has been added) of Fig. 7. To repro­
duce the more gradual temperature de­
crease at night, the delay of the mini­
mum until the time of sunrise, and the 
more rapid rise and fall of the temper­
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ature during the daylight hours, one 
must add a sine curve with a period of 
12 hours (the dotted line of Fig. 7). 
The superposition of the daily mean 
and the first and second harmonics is 
represented by the crosses for every 
second hour. The second harmonic of 
the daily temperature curve is thus a 
result of the asymmetry of the effects 
producing the temperature curve, 

The remaining small difference be­
tween observed and computed tempera­
tures can be largely represented by a 
third harmonic, a wave of 8-hour peri­
od; addition of this third harmonic cor­
rects essentially for differences in the 
relative lengths of day and night 
throughout the year. It is zero or nearly 
zero around the equinoxes and changes 
its phase by 180 degrees (or nearly 
180 degrees) between winter solstice 
and summer solstice, just like the cor­
responding pressure oscillation. A fur­
ther improvement of the theoretical 
temperature curve can be obtained by 
adding a fourth harmonic, which has 
an amplitude even smaller than that of 
the third harmonic but which makes 
itself felt nevertheless as a correspond­
ing small pressure oscillation of 6-hour 
period. 

The breakdown of the daily tempera­
ture variation into a number of oscil­
lations of different periods gives, of 
course, a purely formal result. The at­
mosphere, as an oscillating system, re­
sponds to the total excitation provided 
by the daily temperature oscillation. 
But the response depends on the tuning 
of the atmosphere to the different har­
monics of the exciting force. Thus the 
amplitude ratios of, say, the pressure 
waves may be quite different from 
those of the temperature waves. 

The Resonance Theory 

Now let us return to the problem of 
the relative magnitudes of 5, and L,. 
Since L, is smaller than 5" it is sur­
mised that 5, is probably largely at­
tributable to the thermal, rather than 
to the gravitational, action of the sun. 
But the diurnal term in the daily-tem­
perature curve is about 2.5 times the 
semidiurnal term (9). while the diurnal 
surface-presure oscillation is only about 
half the semidiurnal oscillation. To re­
move this difficulty Kelvin (2) ad­
vanced the resonance theory, according 
to which the atmosphere has a free 
oscillation with a period of about 12 
hours. A great amount of theoretical 
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work has been done since Kelvin's time 
to determine the free oscillations of the 
terrestrial atmosphere and the response 
of the atmosphere to both gravitational 
and thermal types of excitation. From 
these investigations it follows that the 
free oscillations of the atmosphere are 
the same as the free oscillations of an 
incompressible and homogeneous ocean 
of "equivalent depth" h. This quantity 
h depends on the vertical temperature 
distribution of the atmosphere. G. I. 
Taylor (10) has shown that there is 
in general an infinite number of equiv­
alent depths for a given atmospheric 
temperature distribution, and that h is 
related to the velocity V of long at­
mospheric waves by the formula V' = 
gh, where g is the acceleration of grav­
ity. Such waves were observed during 
the eruption of the volcano Krakatao 
in 1883 and gave h = 10 krn, approxi­
mately. On the other hand, according 
to theory the equivalent depth h = 7.8 
km is required for a free oscillation 
with period of 12 solar hours. 

In order to discuss what values the 
equivalent depth h of the real atmo­
sphere may assume, let us consider Fig. 
8, which represents two vertical atmo­
spheric tem perature distributions. Be­
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fore rocket data became available, the 
information about the temperature dis­
tribution above 30 kilometers, then the 
ceiling of meteorological balloon as­
cents, came mainly from observations 
of the anomalous propagation of sound. 
These observations indicated, for alti­
tudes around 50 kilometers, tempera­
tures well above those found at the 
ground, and Pekeris (11) showed that 
with the temperature profile A of Fig. 
8, which is characterized by a tempera­
ture maximum of 350 0K at 60 kilo­
meters, two values are obtained for h­
namely, 10 kilometers, as suggested by 
the Krakatao waves, and 7.8 kilo­
meters, very close to the value required 
for strong resonance magnification. 
Since that time, however, rocket as­
cents have given a much more reliable 
picture of the temperature distribution 
of the atmosphere; this distribution is 
represented by profile B of Fig. 8. 
which shows temperatures considerably 
lower than 3500K at altitudes of 50 to 
60 kilometers. With these lower temper­
atures the value h = 10 km is retained, 
but not the value li = 7.8 km. Thus, 
the resonance magnification for the 
solar semidiurnal oscillation is not 
strong (not X 60 or more, as was previ­
ously thought) but quite weak (on the 
order of X 3 or X 4). 

For these more realistic models with 
little magnification of 5" the lunar semi­
diurnal oscillation would be magnified 
to about the same extent as the solar 
semidiurnal oscillation, in agreement 
with the observed magnitude of the 
lunar tide. 

Thermal Excitation 

With this low resonance magnification 
the gravitational excitation cannot con­
tribute noticeably to the observed mag­
nitude of the solar semidiurnal pres­
sure oscillations. It becomes necessary 
to examine the thermal excitation in 
detail. Only a small amount of the in­
coming solar-radiation energy is ab­
sorbed in the atmosphere before reach­
ing the ground. Thus, the heating of 
the atmosphere, at least in the lower 
troposphere, proceeds mainly from the 
ground upward. by turbulence and by 
long-wave radiation. These processes 
are effective only through a very lim­
ited height range. Hence, the resulting 
temperature oscillation is reduced to in­
significance at a few hundred meters' 
altitude and affects only a small part 
of the total mass of the atmosphere, 



one-tenth or less. So long as only this 
part of the total heating and cooling 
effect of the sun was considered, it 
seemed necessary to assume large mag­
nification, and the contribution of the 
thermal excitation appeared to be only 
of about the same magnitude as the 
gravitational excitation (J2), insuffi­
cient to explain the observed semi­
diurnal pressure oscillation without 
very appreciable magnification. 

As a way out of this difficulty, Sen 
and White (J3) and Siebert (J3) 
pointed out that the amount of incom­
ing solar energy absorbed directly in 
the atmosphere, while small, must give 
rise to a daily temperature variation 
in the atmosphere which makes a very 
significant contribution to the atmo­
spheric oscillation, since it affects the 
whole atmosphere. 

Moreover, 'at higher layers in the at­
mosphere, ozone becomes important in 
the atmospheric heat budget. Because 
of its high absorptive power in certain 
parts of the ultraviolet region the ozone 
that is present heats the upper atmo­
sphere between 30 and 50 kilometers 
very considerably and is in fact re­
sponsible for the relatively high temper­
atures at about 50 kilometers shown in 
Fig. 8. The ozone also produces pro: 
nounced daily temperature variations 
in this whole layer, which must con­
tribute to the diurnal oscillations and 
their higher harmonics. Butler and 
Small (J 4), in fact, conclude that by 
far the largest part of the semidiurnal 
pressure oscillation is due to the tem­
perature oscillation in the ozone layer. 
Jf the temperature wave producing 5. 
occurs mainly in a higher atmospheric 
layer, a node for 5, should exist at 
about 30 kilometers, and the phase 
should here change by 180 degrees 
(14, 15). The geomagnetic variations 
seem to indicate a phase reversal be­
tween the surface layers of the atmo­
sphere and the ionosphere. But this 
phase difference can also be accounted 
for by the gradual phase changes of 52, 
observed in the tidal wind oscillations 
at meteor heights, between 80 and 100 
kilometers. Data obtained in observa­
tions over the Azores (7) at elevations 
around 30 kilometers do not show the 
node and sudden phase change which 
should exist if the cause of 52 is to be 
found in the ozone layer, but the eleva­
tions were not sufficiently high to rule 
it out conclusively. Thus, it is at pres­
ent impossible to decide on observa­

tiona! grounds whether 52 is caused by 
the heating of the whole atmosphere or 
by the heating of the ozone layer alone. 

It remains for me to explain why the 
diurnal pressure oscillation at the 
ground is only half 52, even though the 
corresponding diurnal temperature os­
cillation is about 2.5 times the semi­
diurnal temperature wave. The ex­
planation of this discrepancy is to be 
found partly in the resonance magnifi­
cation of 52, even though this magnifi­
cation is small, and partly in the fact 
that the diurnal pressure oscillation is 
actually reduced in the atmosphere, 
rather than magnified. This reduction 
is due to the small equivalent depth 
required for 5,-less than 700 meters, 
a value which differs from the actual 
equivalent depth of the atmosphere (10 
krn ) even more than the value required 
for 52 (7.8 km) does. A simple calcu­
lation based on Siebert's work shows 
that a temperature oscillation of a given 
amplitude would produce a 12-hourly 
pressure oscillation of amplitude almost 
4 times that of the 24-hourly oscilla­
tion. Thus, the discrepancy between (i) 
the amplitudes of 52(pO) and 5, (p,,) 
and (ii) the amplitudes of the cor­
responding temperature oscillations is 
greatly reduced. 

In the discussion of the tidal theory 
given here I refer only to the lower 
layers of the atmosphere, up to ap­
proximately 100 kilometers. At greater 
elevations, where the tidal motions be­
come as large as the mean motion, the 
basic assumption of the tidal theory­
that the motion is sufficiently small that 
the equations can be linearized-is no 
longer valid. Furthermore, because of 
the increasing ionization of the atmo­
sphere at these heights, hydromagnetic 
effects can no longer be neglected. The 
study of these problems has hardly be­
gun. 

Summary 

The semidiurnal lunar tide in the 
earth's atmosphere is about 15 times 
smaller than the semidiurnal solar tide. 
Since the gravitational tidal force of 
the moon is 2.2 times that of the sun, 
the semidiurnal solar tide must be 
largely produced by the thermal action 
of the sun. The daily variation of the 
atmospheric temperature has, in fact, 
not only a 24-hourly but also a 12­
hourly harmonic and other, higher 
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harmonics, because of the asymmetry of 
the daily temperature curve. The ampli­
tude of the 24-hourly harmonic of the 
temperature curve is considerably larger 
than that of the 12-hourly harmonic. 
To explain why the 12-hourly pressure 
oscillation is larger than the 24-hourly 

-oscillation, the resonance theory postu­
lates that the atmosphere has a free 
oscillation of period close to 12 hours, 
so that the 12-hourly pressure oscilla­
tion is greatly magnified. But such a free 
oscillation requires, at elevations around 
50 kilometers, temperatures higher than 
those at the ground, and rocket observa­
tions do not show such high tempera­
tures. That the semidiurnal pressure 
oscillation is nevertheless larger than the 
diurnal oscillation can be accounted for 
by the fact that the atmosphere does 
magnify the 12-hourly oscillation slight­
ly, and that it has a tendency to sup­
press the 24-hourly oscillation. 

While the atmospheric tidal motions 
are small at the bottom of the atmo­
sphere, as compared to the mean values 
for the wind velocity, they increase with 
altitude and are greater by about two 
orders of magnitude at elevations be­
tween 80 and 100 kilometers than they 
are at the earth's surface. Thus, strong 
periodic motions occur at these high 
levels. 
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