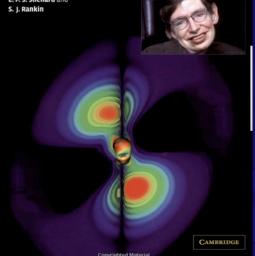

Data- and Compute-Driven Transformation of Modern Science

Edward Seidel Assistant Director, Mathematical and Physical Sciences, NSF Jim Ulvestad Division Director, Astronomical Sciences, NSF

Profound Transformation of Science **Collision of Two Black Holes**



The Future of Theoretical Physics and Cosmology

Celebrating Stephen Hawking's 60th Birthday

Edited by G. W. Gibbons E. P. S. Shellard and S. J. Rankin

1972: Hawking. 1 person, no computer 50 KB

1995: 10 people, large computer, **50MB**

1998: 3D! 15 people, larger computer, 50GB

Transient & Data-in

- New era: seeing events as they occur
 - (Almost) here now
 - ALMA, EVLA in radio
 - Ice Cube neutrinos
 - On horizon
 - 24-42m optical?
 - LICC

Si

phys

Communities need to share data, software, knowledge, in real time

Will require integration across disciplines, end-toend

3

Scenarios like this in all fields "Heroic Age of Digital Observation"

Framing the Challenge: Ociety Transformed by Data

think like this...

- Interaction multiscale
 4 centuries of constancy,
- 4 decades 10⁹⁻¹² change!
- Multi-disciplina
 Collaborations
 - Individuals, groups teams, communiti

Sea of Data

Heroic Age of Digitar Observation The FOURTH But such radical change cannot be adequately addressed with (our current) incremental approach!

Students take

note!

ientific

¹¹Ce

The Shift Towards a "Sea of Data" Implications

Science & society are now data-dominated

> Experiment computation, theory

Fundamental questions become focused around data: How to remove boundaries? How to incentivize sharing? How do we attribute credit for this new publication form? How are data peer reviewed? What is a publication in the modern data-rich world?

Publication
 Totally new nodologies
 Algorithms, no hematics, culture
 Data become the medium for
 Multidisciplinarity, communication, publication...science ⁶

Changes Coming at NSF for Data! Long-standing NSF Policy on Data

Investigators are expected to share with other researchers, at no more than incremental cost and within a reasonable time, the gathered in the Sharing data, software

NSF now requi

> DMP will be ≤.

> DMP subject to p

will be needed for both interdisciplinary work and reproducibility

in necessary

DMP

It will not be possible to support of the pos

Customization by discipline,

Developing unifying data f ework for science
 Should connect globally; discussions underway with EU

National Science Board beginning to examine policy for access and openness of data and publication

Recommendation of NSF Advisory Committee on Cyberinfrastructure ACCI

"The National Science Foundation should create a program in Computational and Data-Enabled Science and Engineering (CDS&E), based in and coordinated by the NSF Office of Cyberinfrastructure. The new program should be collaborative with relevant disciplinary programs in other NSF directorates and offices."

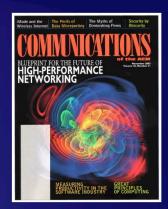
NSF can make a strong statement that will lead the Foundation, researchers it funds, and US universities and colleges generally, by recognizing Computational and Data-Enabled Science and Engineering as the distinct discipline it has clearly become.

Just Round

Approved Arden L. Bement, Jr. Director National Science Foundation

05/27/2010

Date


Critical Lessons to Take Home

Science and society profoundly changing

- Comprehensive approach needed to address complex problems of 21st century
 - All elements must be addressed, not just a few; can't even start to address problems without all
 - Many exponentials: data, compute, collaborate
- Data-intensive science increasingly dominant
 - Modern data-driven CI presents numerous crises, opportunities

Academia and Agencies must address

- Rethinking Academic Structures, Curriculum, P&T
- NSF Responding through CIF21, changes in implementation of data policy, new programs

