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The science of big data sets

Big Questions

Nature of Dark Matter

Nature of Dark Energy

Small Effects
Requires large volumes

Systematics are important

Large projects, small science teams

Collaborative

Distributed ideas
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-
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What is the science we want to do?

• Finding the unusual 
– Billion sources a night 
– Nova, supernova, GRBs
– Instantaneous discovery 

• Finding moving sources
– Asteroids and comets
– Proper motions of stars

• Mapping the Milky Way
– Tidal streams
– Galactic structure

• Dark energy and dark matter
– Gravitational lensing
– Slight distortion in shape
– Trace the nature of dark energy
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What are the operations we want to do?

• Finding the unusual 
– Anomaly detection
– Dimensionality reduction
– Cross-matching data

• Finding moving sources
– Tracking algorithms
– Kalman filters

• Mapping the Milky Way
– Density estimation
– Clustering (n-tuples)

• Dark energy and dark matter
– Computer vision
– Weak Classifiers
– High-D Model fitting



1. Complex models of the universe
What is the density distribution and how does it evolve
What processes describe star formation and evolution

2.  Complex data streams
Observations provide a noisy representation of the sky

3. Complex scaling of the science
Scaling science to the petabyte era
Learning how to do science without needing a CS major

Science is driven by precision we need to tackle 
issues of complexity:



The challenge of big surveys
2000 - 2014

Sloan Digital Sky Survey (SDSS)
120 Mpixel camera, (0.08 PB in 10 yrs)
300 Million unique sources (4 TB)

PanSTARRS (PS1)
1.4 Gpixel camera (0.4 PB per year)

2018 –
Large Synoptic Survey Telescope (LSST)

3.2 Gpixel camera (6 PB per year)
1000 observations of every source

Simulations (gorilla in the room)
TBs per run generated today
TBs per hour in the next 5 years
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Case Study: Complexity and simplifying data

We can measure many 
attributes about sources 
we detect…

… which ones are 
important and why (what is 
the dimensionality of the 
data and the physics)

Connolly et al 1995



What the Hell do you do with all of that Data?Low dimensionality even with complex data
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4000-dimensional (λ’s)

10 components Ξ >99% of variance

 

f λ( ) = aieii<N
∑ λ( )



Dimensionality relates to physics

Yip  et al 2004

400-fold compression
Signal-to-noise weighted
Accounts for gaps and noise
Compression contains physics

Elliptical

Spiral



Responding to non-linear processes

Local Linear Embedding (Roweis and Saul, 2000)

Preserves local structure
Slow and not always robust to outliers

PCA LLE



A compact representation accounting for 
broad lines 

VanderPlas and Connolly 2009

Elliptical

Spiral

Seyfert 1.9

Broad line QSO

No preprocessing 

Continuous
Classification

Maps to a physical
space



Case Study: Learning structure to find the unusual

Type Ia supernovae
0.01% contamination
to SDSS spectra

Type Ia supernovae
Visible for long
(-15 to 40 days)

 

SN λ( ) = f (λ) − aiegii<N
∑ λ( )− qieq ii<N

∑ λ( )

Well defined spectral
signatures

Magwick et al 2003



Bayesian classification of outliers

Density estimation using a mixture of Gaussians 
gives P(x|C): likelihood vs signal-to-noise of anomaly



Probabilistic identification with no visual 
inspection 

Krughoff et al 2011 Nugent et al 1994



Case Study: How to find anomalies when 
we don’t have a model for them

HII and PoG

CVs and DN



Anomaly discovery from a progressive 
refinement of the subspace

Outliers impact the local subspace determination (dependent 
on number on nearest neighbors). Progressive pruning
identifies new components (e.g. Carbon stars).

Need to decouple anomalies from overall subspace



Anomalies within the SDSS spectral data

Xiong et al 2011

PN G049.3+88.1
Ranked first
Expect 1-3 PNE
Found 2

CV-AM
2 orbiting WDs
Ranked top 10

WD with debris disk
Ranked top 30
Only 3 known in SDSS



Expert user tagging (http://autonlab.org/sdss)

Xiong et al 2011



Case Study: From high dimension to low 
signal-to-noise

Jain, Seljak, White Bartelmann and Schneider



Case Study: How to develop scalable algorithms?

New philosophy of development 
through high fidelity simulations 

Components:
Survey strategy
Source catalogs
Images
Processing
End-to-end processing

Algorithms:
Source detection and image subtraction
Classification
Linkage of moving sources
Scalability  



Broad range of astronomical 
sources

Galaxies
Cosmology from n-body simulations
106 sources/ sq deg (r<28)
Morphology, AGN, lenses, variability

Stars
Galactic structure model
Main sequence, giants, dwarfs
Cepheids, flare stars, micro-lensing
Proper motion, parallax, differential effects

Asteroids
Solar system model
10 million main belt
KBO, TNO, Trojans….



Coarse

1pix=16cm

Medium

1pix=4cm

Fine

1pix=1cm

Simulating the flow of photons through 
the atmosphere

Source Photons

Optics

Parameterized a view above 
the atmosphere

Turbulent atmosphere
Frozen screens (six layers)
Based on observations 

Wavelength dependent
Refraction, Cloud, Scattering



The impact of optics

Telescope model
Three mirror modified Paul-Baker design
Fast ray-trace algorithm
Perturb the surfaces (1300) to determine the impact of control system
Conversion of photons to electrons



Following the photon flow…

John Peterson



ImSim Description 46





The full system

Science at the scale of the LSST
With the same cadence and similar systematics
Catalogs, images and scalable science

189 CCDs
16 amplifiers per CCD
109 photons



How do we make the new generation science 
happen?

Science at the petascale still requires a scientist
Broad range of abilities and requirements
Mathematically sophisticated (but not necessarily 

computationally)
Good at scripting (IDL, Python)
Code is often throw away (but this is changing)
Good at learning new approaches (e.g. SQL, AWS)

But needs to see fast returns if an early adopter
Community driven
Pretty tolerant…



Summary: how do we scale our 
science?

Collecting data is not the challenge
Storage is not an issue (other than cost)
Not just a question of more CPUs

Need new ways of understanding what information 
is contained within our data and how we can 
efficiently extract it
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