

ALMA Data & Pipeline

B.E. Glendenning (NRAO) ALMA Computing Integrated Product Team Lead

ALMA Status

- Commissioning and Science Verification in progress
 - 11 (of 66) antennas in use at the high site
 - Many more are being assembled, integrated, tested, ... at the low site
- Cycle 0: Call on March 30, Start of observations Sept 30
 - <1000 hours, 9 months, 16+ antennas
- The ALMA data management system was designed in from the beginning and will be delivered with the telescope

2011-05-05

ALMA Data

- Raw Data
 - Correlator > 10¹⁷ FLOPs
 - ALMA (baseline) correlator capable of 1 GB/s = 43 TB/day into the Archive (visibilities usually compressed 2x).
 - End of construction peak rate = 60 MB/s = 5 TB/day
 - Average presumed to be 10% of this = 6 MB/s = 0.5 TB/day
 - Format (complicated, ~40 table types) common between ALMA & EVLA
- Pixel Data
 - TPixel (10,000³) images will not be common but will be made (0.006" finest resolution)
- Many observers have become used to radio interferometer data processing being a laptop scale problem

ALMA Software

- Developed in a large consortium (15 locations, 4 continents)
- Integrated system
 - Data models & technology
 - For example, goals and intent from Phase II flow through the observing system to the pipeline
 - ~6% of the ALMA construction budget

Observatory Software

Software required by ALMA to interact with the observing community, optimize the observing process, and quality check what has been observed

- Distributed science archive
- Science Pipeline
 - Phase 1 & phase 2 Observing Tool
- TAC support

- Observing project tracking
- QA metrics extraction & tracking
- User Portal
- Data packaging & distribution
- Manual data processing/ analysis (CASA)

ALMA Science Pipeline

- The science pipeline is part of the effort to make ALMA accessible to the entire astronomical community
- The science pipeline will reduce data taken in standard observing / reduction modes
- The science pipeline will produce standard data products for the science archive
- The pipeline scripts will be made available for further offline processing at the ARCs and by observers
 - Pipeline images will be given to observers even in cycle 0, although the pipeline will still need training

ALMA Pipeline Heuristics

- The ALMA Pipeline Heuristics attempt to capture user intent and expert knowledge and encode it in data reduction recipes
- There is one recipe per standard reduction mode
- Currently there are heuristics recipes for
 - Single field interferometry
 - Pointed mosaics interferometry
 - Single dish data
- IF/SD combination recipe is under development (not a released mode for Cycle 0)

List of Heuristics Tasks

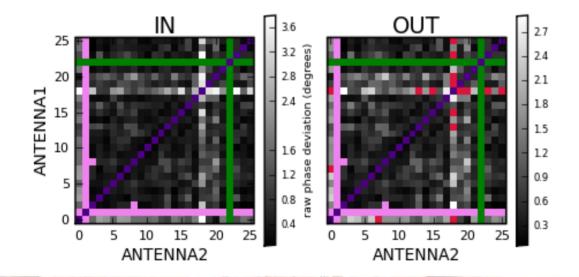
Interferometry

30 tasks available.

task name	description
hif applycal	Compute and apply or apply the calibration
hif bandpass	Compute a bandpass calibration
hif_bestbandpass	Find the best bandpass calibration method
hif close	Close the interfometry pipeline framework
hif comment	Writes a comment to the pipeliene web log
hif configpaths	Configure directories for the interferometry pipeline
hif contsubclean	Create cleaned line and continuum images
<u>hif_delaycal</u>	Compute the delay correction
hif evalbandpass	Evaluate quality of the bandpass solution
hif findedgechan	Detect the bandpass edges
hif findlines	Find line regions in cleaned cube image sources
hif flagcalvis	Flag calibrated visibility data
hif_flagdata	Flag known bad data
hif flagmodelvis	Flag model visibility data
<u>hif flagrawvis</u>	Flag raw visibility data
hif gaincal	Calculate the gain and flux calibration solutions
hif_grpgaincal	Calculate the gain and flux calibration for groups of spectral windows
<u>hif init</u>	Initialize the interferometry pipeline framework
hif moscalclean	Calibrates, images and cleans pointed mosaic targets
hif mosclean	Image and clean pointed mosaic targets
hif plotbandpass	Plot a bandpass calibration
hif_plotcalvis	Plot flagged calibrated visibility data
hif plotgaincal	Plot a gain calibration
hif plotmodelvis	Plot flagged model visibility data
<u>hif plotrawvis</u>	Plot flagged raw visibility data
hif plotspectra	Plot spectra of sources in cleaned cube images
hif_regsession	Register data session/vislist with the pipeline framework
hif sfcalclean	Cleans or calibrates and cleans single field targets
hif sfclean	Create single field cleaned images
<u>hif summary</u>	Summarize an interferometry observation

Single-Dish

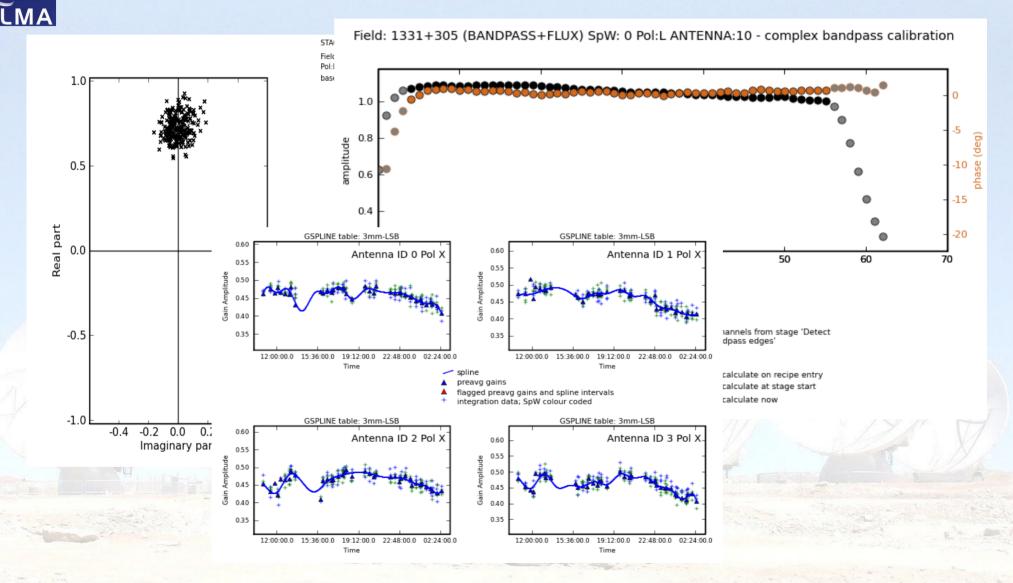
24 tasks available.



Interferometry Heuristics

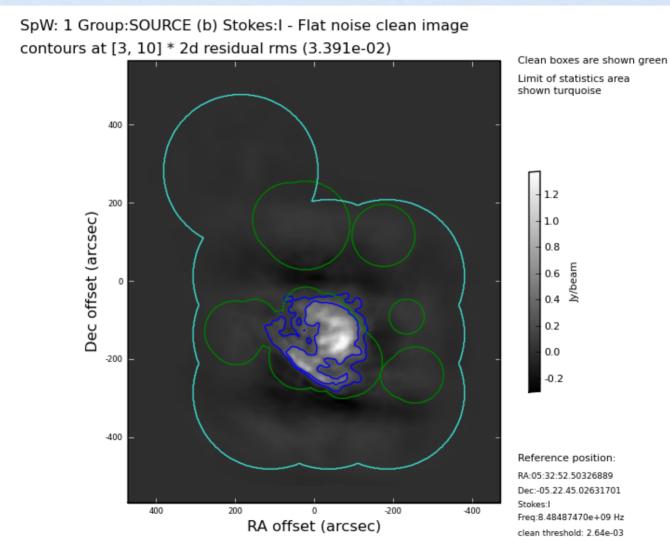
- The interferometry recipe implements stages to
 - Perform basic flagging, e.g. shadowing
 - Flag bad raw data (coarse flagging)
 - Bandpass, gain, and flux calibrate the data
 - Flag bad calibrated data (finer flagging)
 - Image the data
 - Detect lines and determine line regions
 - Compute line and cotinuum images

Flagging noisy calibrator phases. Each data point in the display shows a measure of the phase noise for that baseline.


STAGE: 8 Flag calibrator baselines with noisy phases

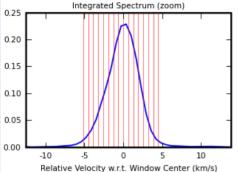
Field:1331+305 (BANDPASS+FLUX) SpW: 0 Pol:RR raw phase deviation

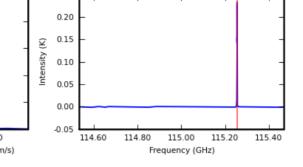
2011-05-05

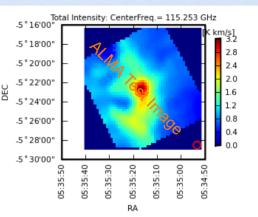

Interferometry Calibration Examples

2011-05-05

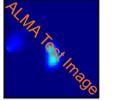
Interferometry Imaging Example

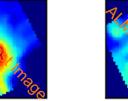


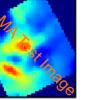

2011-05-05

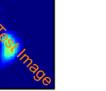


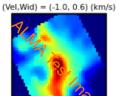
ALMA Single Dish Test Data: Orion

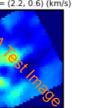

Integrated Spectrum

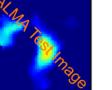


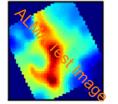

(Vel,Wid) = (-4.8, 0.6) (km/s)

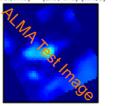

(Vel,Wid) = (-1.6, 0.6) (km/s)


(Vel,Wid) = (1.6, 0.6) (km/s)

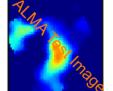

(Vel,Wid) = (-4.2, 0.6) (km/s)


0.25

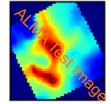

(Vel,Wid) = (2.2, 0.6) (km/s)


(Vel,Wid) = (-3.5, 0.6) (km/s)

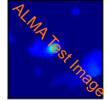
(Vel,Wid) = (-0.3, 0.6) (km/s)

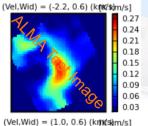


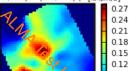
(Vel,Wid) = (2.9, 0.6) (km/s)

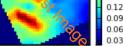


Innovations in Data-Intensive Astronomy

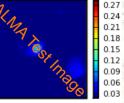

(Vel,Wid) = (-2.9, 0.6) (km/s)



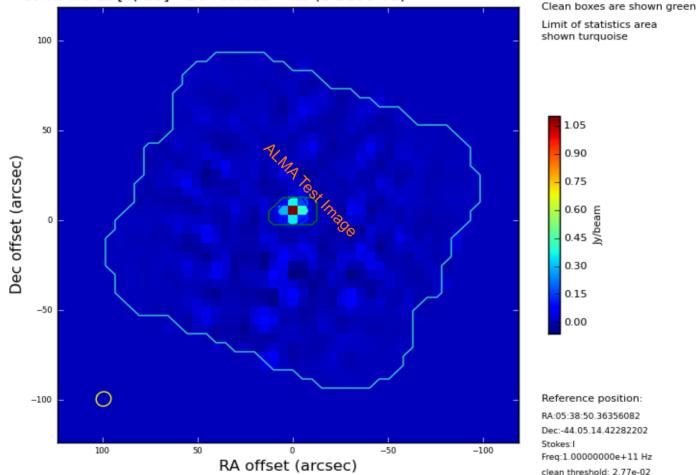

(Vel,Wid) = (0.3, 0.6) (km/s)



(Vel,Wid) = (3.5, 0.6) (km/s)



(Vel,Wid) = (4.2, 0.6) (kn/tk/skm/s]



2011-05-05

ALMA Mosaic Test Data: QSO J0538-440

Field:J0538-440=QSO (TARGET) SpW: 1 (a) Stokes:I - Flat noise clean image contours at [3, 10] * 2d residual rms (1.116e-02)

2011-05-05