Theory and Design of an Edge-Coupled Terahertz Photomixer Source

Daryoosh Saeedkia and Safieddin Safavi-Naeini

Abstract—A terahertz photomixer with guided-wave optical excitation scheme is analyzed, and as an example, an edge-coupled photomixer source is designed with low-temperature-grown (LTG) GaAs as its ultra-fast photoabsorbing layer and $\text{Al}_{0.35}\text{Ga}_{0.65}\text{As}$ and $\text{Al}_{0.35}\text{Ga}_{0.65}\text{As}$ as core and cladding layers of its optical waveguide structure, respectively.

Index Terms—Terahertz optoelectronics, Photomixers, CW terahertz sources, Optical waveguides.

I. INTRODUCTION

TERAHERTZ technology is a fast-growing field [1], [2] with applications in biology and medicine [3]-[5], medical imaging [6], material spectroscopy and sensing [7], security [8], monitoring and spectroscopy in pharmaceutical industry [9], and high-data-rate communications [10]. The direction of the terahertz technology is towards the implementation of compact and cost-efficient systems for different terahertz applications. Realization of a compact, high-power, and low-cost terahertz source is a crucial step towards this goal.

Photomixers are promising continuous-wave terahertz sources as potentially compact, low-power-consuming, coherent, low-cost, and tunable sources [11], [12]. In a terahertz photomixer, a beat-frequency signal is generated due to mixing of two frequency-detuned laser beams inside a dc-biased ultra-fast photoconductor [13], [14] or a superconductor [15], [16].

Terahertz photomixers can be realized as vertically illuminated or edge-coupled devices [17]-[22]. In the edge-coupled photomixer sources, the laser beams are guided inside an optical dielectric waveguide structure and being absorbed by an overlying ultra-fast photoabsorbing layer, wherein a terahertz signal is generated due to photomixing phenomena. The generated terahertz signal is guided by a transmission line, which can be a coplanar stripline (CPS), a coplanar waveguide (CPW), or a parallel-plate waveguide. The edge-coupled photomixer sources are attractive for system-on-chip configurations for terahertz spectroscopy and sensing and terahertz imaging applications.

Among the challenging issues for realization of the edge-coupled photomixer sources are: control over the optical power absorption rate inside the photoabsorbing layer in order to increase the thermal failure threshold of the device and maximize the generated terahertz power; realization of the velocity match between the optical beat signal and the terahertz signal; and implementation of a proper dc-bias configuration and terahertz waveguiding structure.

In this paper, we analyze an edge-coupled terahertz photomixer source, which contains an optical waveguide structure located above a grounded dielectric substrate and covered by interdigitated electrodes (Fig. 1). The top layer of the optical waveguide structure is made of an ultra-fast photoabsorbing material, wherein the photomixing phenomena takes place. One can control the optical power absorption rate by changing the thickness of the photoabsorbing layer. The dc bias is applied through the interdigitated electrodes. The electrode spacing is much smaller than the wavelength of the generated terahertz signal, hence, it is a good approximation to assume that the terahertz wave sees the electrode structure as a uniform metallic plate. The electrodes and the ground plane act as a parallel-plate waveguide for the generated terahertz signal.

II. OPTICAL WAVEGUIDE

In the configuration shown in Fig. 1, two laser beams with their central frequency difference falling in the terahertz spectrum are coupled to a five-layer dielectric slab waveguide structure. The band gap for $\text{Al}_{0.35}\text{Ga}_{0.65}\text{As}$ is $E_g = 1.42$ eV, 1.66 eV, and 1.86 eV, for $\zeta = 0, \zeta = 0.2$, and $\zeta = 0.35$, respectively.
the Al content of the $\text{Al}_x\text{Ga}_{1-x}\text{As}$ layers as $x = z = 0.35$ and $y = 0.2$. At the wavelength $\lambda = 780$ nm ($E = 1.59$ eV) the refractive index of the layers in Fig. 1 will be $n_1 = 3.66$, $n_2 = n_4 = 3.44$, and $n_3 = 3.554$.

The bias electrodes are made of gold with the refractive index $n_0 = 0.1383 - j4.7932$ at $\lambda = 780$ nm.

The total thickness of the dielectric region, $h$, must be small enough so that only TEM mode can be supported by the parallel-plate waveguide. This can be achieved by

$$h \leq \frac{c}{2f_i n_1}$$

where $f_i$ is the cutoff frequency of the lowest order non-TEM modes. For example, for $h \leq 6.8 \mu m$ and for the frequencies below 6 THz, the only supported mode by the parallel-plate waveguide is the TEM mode.

The optical intensity distribution across the dielectric layers and at the different positions along the waveguide is shown in Fig. 2. As it can be seen from Fig. 2, the optical intensity decreases as the optical field propagates along the waveguide, which is due to the optical power absorption inside the LTG-GaAs layer.

Fig. 3 shows the total optical power inside the waveguide along the z-axis and optical intensity distribution of $\text{TE}_0$ mode across the dielectric layers for different values of $h_1$, $h_2$, and $h_3$. The total optical power decreases exponentially along the waveguide. The following equation fits the resulting graphs

$$P_{\text{opt}}(z) = P_{\text{opt}}(z = 0)e^{-\alpha_e z}$$

where $\alpha_e < \alpha$ is the effective absorption coefficient. For the higher optical intensity inside the photoabsorbing layer, the effective absorption coefficient is higher. The optical power inside the LTG-GaAs layer decays at the same rate as the total optical power.

III. Simulation Results

All the physical and dimensional parameters of the designed photomixers are given in Table I. For the designed devices, the ultra-fast photoabsorbing layer is LTG-GaAs and Al contents of the $\text{Al}_x\text{Ga}_{1-x}\text{As}$ layers are $x = z = 0.35$ and $y = 0.2$ (see Fig. 1). The propagation constants in the conductor-covered and air-covered regions are $\beta_1 = 2.7813 \times 10^7$ rad/m and $\beta_2 = 2.7814 \times 10^7$ rad/m, respectively. Inset shows the optical intensity inside the photoabsorbing layer and air.

Fig. 4 shows the terahertz photocurrent along the waveguide at 1 THz beat frequency and at different depths. The total static electric field is shown for comparison. The terahertz photocurrent is lower at the surface of the LTG-GaAs layer, where the optical intensity is smaller (see Fig. 2). The amplitude of the x-component of the terahertz photocurrent are smaller under the electrodes, where the amplitude of the electric field is low. As it can be seen from Fig. 4, the terahertz photocurrent follows the static electric field variation in low-field regime. For the static field above a certain value the carrier velocity saturates and the carrier lifetime become big enough to make $\Omega \tau \gg 1$, hence the terahertz photocurrent becomes independent of the electric field.

Fig. 4 also shows the x-component of the terahertz photocurrent along the waveguide at two different beat frequencies. For the beat frequency $f = 0.1$ THz, the terahertz photocurrent follows the static electric field variation even at the high-field regime. This is due to the fact that at the low frequencies the term $\Omega \tau$ is small and the terahertz photocurrent is proportional to the carrier lifetime and hence is a function of the electric field. For the beat frequency $f = 1$ THz, and except for
very low electric field, the term $\Omega r$ becomes large and hence the terahertz photocurrent becomes independent of the electric field. One can see from Fig. 4 that the terahertz photocurrent is higher inside the air-covered regions, where the optical intensity is higher. Fig. 5 shows the amplitude of the $x$-components of the terahertz photocurrent and the dc photocurrent for different values of the thicknesses of the dielectric layers. As it can be seen from Fig. 5, both the terahertz photocurrent and the dc photocurrent are higher when the coupled optical power inside the photoabsorbing layer is higher (see Fig. 3). Since the generated terahertz power is proportional to the square of the terahertz photocurrent, one can increase the generated terahertz power by increasing the coupled optical power inside the photoabsorbing layer. Hence, the optimum thicknesses for the dielectric layers are the thicknesses, which results in maximum possible optical intensity inside the LTG-GaAs layer. Nevertheless, one has to take into account the device thermal failure due to the resulting optical and electrical thermal power.

The generated terahertz power for an edge-coupled photomixer with parameters given in Table I and with $h_1 = h_3 = 100$ nm and $h_2 = 50$ nm is 0.9 $\mu$W at 1 THz beat frequency.

IV. CONCLUSION

An edge-coupled distributed terahertz photomixer source is analyzed and designed. The proposed device has potential applications in terahertz biosensing, imaging, and spectroscopy.
Fig. 5. Generated photocurrent along the waveguide at 1 THz beat frequency and at $x = -10$ nm for different values of $h_1$, $h_2$, and $h_3$ and with $h_4 = 2 \text{ pm}$: (a) $h_1 = h_2 = 800, 100 \text{ nm}$ (solid line), (b) $h_1 = h_2 = 800, 100 \text{ nm}$ (dashed line), and (c) $h_1, h_2, h_3 = 100, 800, 100 \text{ nm}$ (dotted line). (a) terahertz photocurrent (b) dc photocurrent.

REFERENCES