A Millimeter/Submillimeter Microwave Kinetic Inductance Detector Camera for Multicolor Mapping

Jason Glenn1, Peter K. Day2, Sunil Golwala3, Shwetank Kumar3, Henry G. LeDuc2, Benjamin A. Mazin2, Hien T. Nguyen2, James Schlaerth1, Anastasios Vayonakis3, & Jonas Zmuidzinas2,3

Microwave Kinetic Inductance Detectors (MKIDs) are sensitive, superconducting, Cooper-pair-breaking detectors. They lend themselves to elegant multiplexed readout using HEMT amplifiers and software-defined radio technology. Recently 16-pixel, two-color, antenna-coupled MKID arrays have been tested in the laboratory, demonstrating readiness for large-scale focal plane arrays for astrophysics. Additionally, MKID noise has been reduced to the BLIP level for 750 μm to 1.3 mm observations from Mauna Kea. Hence, we are building a four-band (750 μm, 850 μm, 1.1 mm, and 1.3 mm) MKID camera to make observations, first from the Caltech Submillimeter Observatory, and later from the Cornell-Caltech Atacama Telescope. The MKID camera will utilize an array of 600, four-color, antenna-coupled MKIDs, for a total of 2,400 channels, yielding a high survey mapping speed. We will report on a conceptual design for this camera and laboratory results from a small-scale demonstration camera4. A successful demonstration of large-scale MKID arrays will provide an alternative technology to transition-edge sensors (TESs) for SOFIA, the Beyond Einstein Cosmic Microwave Background Polarization Probe (CMBPol), and SAFIR.

1Center for Astrophysics and Space Astronomy, University of Colorado, 389-UCB, Boulder, CO 80309 (contact author: jglenn@casa.colorado.edu)
2Jet Propulsion Lab, 4800 Oak Grove Drive, Pasadena, CA 91109
3George W. Downs Laboratory of Physics, MC 320-47, California Institute of Technology, Pasadena, CA 91125
4This work is funded, in part, by a NASA APRA grant and a grant from the Moore Foundation.