Study of NbN ultra-thin films for THz hot-electron bolometers

Abstract— Hot-electron bolometer (HEB) mixers based on superconducting ultra-thin NbN films are largely used for THz spectroscopy for space and ground-based observations. Performance of the HEB mixers directly depends on the details of the structure and composition of thin film surface, as well as the nitrogen composition and its depth distribution. In this work, we present the study of the composition and the surface oxidation state of NbN films grown at two different temperatures and of 5 and 10 nm thickness.

Index Terms—Hot-electron bolometers, NbN, surface analysis, thin films

I. INTRODUCTION

Hot-electron bolometer (HEB) mixers based on superconducting ultra-thin NbN films are largely used for THz spectroscopy for space and ground-based observations [1], [2], [3]. The performance of the HEB mixers directly depends on the details of the structure and composition of the thin-film surface, as well as the nitrogen composition and its depth distribution.

The composition of the NbN film affects its superconducting transition critical temperature and width of the transition. Besides the effect on the superconducting critical temperature itself, deviation from the stoichiometric NbN composition causes an increase of the normal resistivity of the film, as well as the precipitation of the second phases. From the other side, at the thin film surface, a natural oxide layer is unavoidable for films with different thicknesses. From that, one can conclude that metallic niobium is not present in the NbN films grown at two different temperatures and of 5 and 10 nm thickness. The eventually residual

device, thus, the knowledge about the thickness and composition of the natural oxide layer over the NbN film is much desired.

In this work, we present the study of the composition and the surface oxidation state of NbN films grown at two different temperatures and of 5 and 10 nm thickness.

II. EXPERIMENT

The NbN ultra-thin films were deposited on (100)-Si substrates by means of DC magnetron reactive sputtering of Nb in the N2-containing atmosphere using an AJA Orion-6UD sputtering system. The system is evacuated by a turbo pump and equipped with a load-lock thus achieving base pressure of < 2×10⁻⁸ Torr. The 99.95% Nb 2-inch diameter magnetron is placed about 10 cm away from the substrate and slightly off-centered and tilted from the normal to the substrate table [4], allowing highly uniform, < 2% variation, deposition rate across the 4-inch substrate table. The substrate holder was pre-heated to either 650°C and maintained at this temperature during the sputtering (further referred as hot deposition) or kept at ambient temperature during the deposition (further referred as cold deposition). The deposition rate was kept about 1.2 Å/s. The further details on the deposition process are reported in [5], [6].

Thin film were analysed with a help of X-ray Photoelectron Spectroscopy (XPS) and Reflected Electron Energy Loss Spectroscopy (REELS). For the studies, the sources of primary electrons (Kimball Physics EMG 4212 with BaO cathodes), and X-rays (SPECS XR-50) were employed. Electron energy spectra have been recorded using semispherical energy analyzer SPECS Phoibos 225 with absolute energy resolution of 0.3 eV within 0-15 keV range. The NbN films have been studied by means of X-ray Photoelectron Spectroscopy (XPS) and Reflected Electron Energy Loss Spectroscopy (REELS).

III. RESULTS AND DISCUSSION

With XPS, we studied the oxidized layers at the NbN films surface; the sort of the oxides and their thicknesses were identified. Fig. 1 presents XPS spectra recorded on the studied NbN films. The recorded spectra are represented as a superposition of the peaks of Nb 3p3/2, Nb-O and Nb-N bonds. From that, one can conclude that metallic niobium is not present in the NbN film samples. The eventually residual
The shift ΔE (Fig. 1a-d) of the $Nb-O$ peak position in respect to the position of the Nb 3p3/2 peak gives the stoichiometry of the natural oxide [8] at the NbN film surface. The observed identical position of the $Nb-O$ peaks for all four films indicates the identical composition of the natural oxide films on top of the NbN.

Accounting for the peak intensity ratio for NbN and $Nb-O$, I_{Nb-O}/I_{Nb-N}, allows the evaluation of the oxide film thickness:

$$d_{NbOx} = \cos(\gamma) \frac{\lambda_{in,NbO_2}}{\lambda_{NbN}} \ln \left(\frac{I_{NbN} \lambda_{NbN}}{I_{NbO_2} \lambda_{in,NbO_2}} + 1 \right),$$

where λ_{in} is inelastic mean free path (IMFP) calculated following [9], $\gamma = 54.74^\circ$ angle between the X-ray beam and the direction towards the energy analyzer. The data on the stoichiometry and thickness of the natural oxide films are summarized in the Table I.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔE, eV</th>
<th>Oxide composition</th>
<th>Oxide Thickness, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td>4.9</td>
<td>Nb_2O_4</td>
<td>1.5</td>
</tr>
<tr>
<td>NbN 5 nm, cold substrate</td>
<td>4.1</td>
<td>NbO_2</td>
<td>0.9</td>
</tr>
<tr>
<td>NbN 5 nm, hot substrate</td>
<td>4.0</td>
<td>NbO_2</td>
<td>0.6</td>
</tr>
<tr>
<td>NbN 10 nm, cold substrate</td>
<td>4.1</td>
<td>NbO_2</td>
<td>0.5</td>
</tr>
<tr>
<td>NbN 10 nm, hot substrate</td>
<td>4.1</td>
<td>NbO_2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Fig. 2 presents the REELS spectra recorded for NbN films, as well as for thick Nb film and reference spectra from [10]. Comparing the REELS spectra for the NbN films of different thickness and grown on hot and cold substrates, one can see that the NbN plasmon peaks appear at the same electron energy loss. This confirms that the stoichiometry for all NbN films is identical for all deposition conditions. One can also extract concentration of the valent electron n_e from REELS data. Energy of electron plasmon oscillation ε_p is defined by the concentration of valent electrons n_e:

$$\varepsilon_p = \frac{\hbar e}{m_e} \sqrt{\frac{n_e}{\varepsilon_0}},$$

where m_e - electron mass, \hbar - Planck constant, ε_0 - permittivity of free space.

The extracted valent electrons concentration in the studied NbN films and thick Nb film as reference, as well as in their natural surface oxides are summarized in the Table II.
TABLE II CONCENTRATION OF VALENT ELECTRONS IN Nb, NbN FILMS AND THEIR SURFACE OXIDES

<table>
<thead>
<tr>
<th>Sample</th>
<th>(n_e \times 10^{29} \text{ m}^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td>3.38±0.16</td>
</tr>
<tr>
<td>NbN 5nm, cold substrate</td>
<td>-</td>
</tr>
<tr>
<td>NbN 5nm, hot substrate</td>
<td>4.7±0.4 1.6±0.6</td>
</tr>
<tr>
<td>NbN 10nm, cold substrate</td>
<td>4.7±0.4 1.5±0.6</td>
</tr>
<tr>
<td>NbN 10nm, hot substrate</td>
<td>4.7±0.4 1.5±0.6</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

We have studied the composition and the surface oxidation state of NbN films grown at elevated and ambient temperatures and of 5 and 10 nm thickness. We have found that all the studied films have identical stoichiometry, with no dependence on layer thickness. All studied films do not contain metallic Nb, so the nitridation is complete; no evidence of any second phase has been found. Stoichiometric composition and thickness of oxidized surface layer has been identified. For all NbN films, the natural oxide layer consists of \(NbO_x \), in contrast to the one formed on Nb film, which contains \(Nb_2O_5 \) oxide. The concentration of valent electrons in NbN films and their oxide layers have been extracted from REELS data.

REFERENCES