
NOTES: 

 

A tunable 167-174.8 GHz differential absorption radar 

has been developed as a remote sensing tool for measuring 

range-resolved absolute humidity inside of clouds and rain 

[1]. This new capability complements the established 

humidity profiling technique of passive radiometric remote 

sensing, since the latter suffers from biases induced by 

scattering by cloud and precipitation droplets [2].  

The VIPR (Vapor In-Cloud Profiling Radar) system, 

shown in Fig. 1a, has been designed based on prior short-

range, low-power radar systems that the Jet Propulsion 

Laboratory has developed at 95, 340, and 680 GHz. Its 

salient features are a Schottky diode frequency-doubler 

source with nearly 500 mW of continuous-wave transmit 

power [3]; ultra-high-isolation quasioptical transmit/receive 

duplexing; digital chirp generation and FFT-based range 

compression; and a 60 cm diameter primary aperture with 

nearly 58 dB antenna gain. 

To validate VIPR’s ability to measure absolute water 

vapor concentration, relative-humidity and temperature 

sensors were deployed on the ground during light rain at a 

distance of 820 m from the radar. VIPR’s beam was pointed 

into the sky just above the sensors. Absolute humidity 

averaged over a 60 m wide swath centered over the sensors’ 

range was retrieved from VIPR’s differential absorption 

signal using the methods previously described in [1]. Fig. 

1b shows a comparison of the radar measurements (blue) 

and the mean value of the in situ results (black) over 

approximately three hours of observation in moderate rain.  

The data of Fig. 1b show that the radar measurements 

provide an accurate measure of the local water vapor 

content with a mean value within ~10-20% of the sensor 

value. However, the significant scatter in the radar 

measurements, which is approximately ten times higher 

than the theoretical expectation from [1], is not fully 

understood yet. One possible contribution to this 

uncertainty is poorly decorrelated speckle arising from a 

too-short (1 ms) pulse repetition interval with respect to the 

beam width and rainfall rate. Another is and frequency-

dependent dispersion in the rain drop scattering cross-

section that competes with the magnitude of change in 
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water vapor absorption over the radar bandwidth. 

Additional measurements and analysis of these effects will 

be presented at the ISSTT meeting, including a discussion 

of how they will affect an upcoming airborne deployment 

of VIPR in late 2019.  

 

 
Fig. 1.  a) VIPR system hardware showing how its 167-174.8 GHz 

beam is pointed above a distant hillside. b) Retrieved absolute 

water vapor content over ground sensors at 820 m (blue) are in 

good agreements with in situ measurements (black), but with 

higher than anticipated levels of measurement scatter.  
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