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Abstract— Modern radio astronomy demands for 
broadband receiver systems. For SIS mixers, this translates 
into objective to employ superconducting tunnel junctions 
with a very low RnA and low specific capacitance. The 
traditionally used Nb/AlOx/Nb junctions have largely 
approached their physical limit of minimizing those 
parameters. It is commonly recognized that it is AlN-
barrier junctions, which are needed for further progressing 
of the broadband SIS mixer instrumentation for radio 
astronomy. In this work, we present the progress in 
development of the process for high quality Nb/Al-AlN/Nb 
superconducting tunnel (SIS) junctions’ fabrication and 
their characterization in terms of their specific capacitance. 

Keywords—SIS junctions, AlN tunnel barrier, specific 
capacitance 

I. INTRODUCTION 
We are developing SIS process technology capable of 

fabricating mixer chips for Next Generation ALMA 
receivers. The requirements for such SIS process 
technology stems from the ALMA 2030 Development 
Roadmap document [1] calling for twice or triple 
enhancement of the RF and IF bandwidths of the 
receivers and consequently the SIS mixers. This in turn 
translates into the requirement for SIS junctions to have 
a smaller specific capacitance, Cs, (i.e. junctions with 
AlN tunnel barrier) and having smaller size. 

We have earlier reported on the process development 
for high-quality Nb/Al-AlN/Nb junction fabrication 
based on microwave plasma nitridation [2]. We showed 
that the Nb/Al-AlN/Nb junctions with RnA product down 
to ~5 Ohm.µm2 demonstrate excellent quality. Also, we 
showed that the produced junctions were quite stable 
against the thermal annealing, at least up to 200oC, thus 
allowing for thermal impact during almost any possible 
fabricating or packaging technology processes. 

In this manuscript, we present results of the Nb/Al-
AlN/Nb junction process development aiming for 
fabricating of smaller area junctions, as well as the 
specific capacitance measurements following the 
approach similar to that reported in the papers [3] at 
GARD and in [4] in NAOJ, by means of on-wafer 
capacitance measurements with 4K probe station.  
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II. RESULTS 

We have developed the process capable of fabricating 
the Nb-based SIS junctions with the junction size 
achieving junction dimensions ≤1µm2. We have 
employed direct laser writing for definition of the 
junction pattern. After setting up the direct laser exposure 
process with the AR-N 4340 negative tone resist, the rest 
of the small SIS junction process has been integrated and 
the test junctions have been fabricated. The test wafer 
included the junctions of different shapes and sizes (Fig. 
1), as well as the bigger sized round junctions for 
extracting of the RnA product along with the junction size 
offset due to the lithography and etching processes (Fig. 
2). The presented on the Fig. 3, the current voltage 
characteristics of the fabricated submicron Nb/Al-
AlN/Nb junctions demonstrate their excellent quality. 

Earlier, we reported on the Nb/Al-AlN/Nb junctions 
specific capacitance measurements [2]. The latter was 
performed in the test cryostat with long and inevitably 
lossy stainless-steel coaxial cables connecting device 
under test at 4K physical temperature with VNA. Use of 
the cables is largely affects the accuracy of the 
measurements because the losses and electrical length of 
the cables are changing while cooling and make the VNA 
calibration compromised.  

Direct measurement of the junction capacitance in 
cryogenic probe station at NAOJ [4], [6] is seen as a very 
attractive alternative option both from the point of view 
of a quicker throughput and - importantly - higher 
accuracy.  
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Fig. 1. Micrographs of the Nb/Al-AlN/Nb SIS junctions of different 
sizes and shapes. 
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Shown on the Fig. 4, a cryogenic probe station at 
NAOJ allows to calibrate out all embedding circuitry 
down to the junction itself. Moreover, through careful 
design of the test structures on-wafer, we have all three 

standards needed for 1-port Short-Open-Load, SOL 
calibration technique integrated right on the chip to be 
applied. This way, every measurement inherently 
includes fresh calibration in the same cooling cycle. 

The dedicated test SIS wafer was designed and 
fabricated (Fig. 5). The test SIS wafer included single SIS 
junctions of different sizes for dc-IVC measurements 
(placed closely adjacent to the big external contact pads) 
and 112 test structures dedicated for capacitance 
characterization. 

Fig. 5. The wafer (upper left) contains 112 test structures for 
capacitance characterization as well as single SIS junctions of 
different sizes for dc-IVC measurements (placed closely adjacent to 
the big external contact pads). Magnified view of the test structures 
(lower left) include structures with SIS junctions, as well as 
calibration patterns (open, short and load) – all for single and twin 
junctions’ arrangements. Optical micrographs of fabricated structures 
are shown to the right 

Fig. 4. Photographs of 4K probe station at NAOJ and device sample 
stage. The probe station allows to perform on-wafer characterization 
of SIS junction lots of various sizes at frequencies ranging from dc to 
microwave. 

Fig. 2. True RnA and dimension offset t is extracted from from the 
scaling of junctions’ Rn vs nominal area of the test round junctions. 

 

Fig. 3. Typical current-voltage characteristics of the Nb/Al-AlN/Nb 
junctions. 
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Each test chip contained structures with SIS junctions, 
single and twin junctions’ arrangements, as well as 
standard patterns (open, short and load). 
The measurement result (Fig. 6) has confirmed that 
specific capacitance of the Nb/Al-AlN/Nb junctions is 
noticeably lower than that reported for the Nb/AlOx/Nb 
junctions, e.g. in [5], as well as the agreement between 
the measurements performed independently at GARD 
and at NAOJ is very good. 

III. CONCLUSION 

We have presented the status of SIS process developing 
capable of fabricating mixer chips for Next Generation 
ALMA receivers. The fabricated Nb/Al-AlN/Nb SIS 
junctions demonstrate excellent junction quality for the 

RnA down to ~5 Ohm.µm2 and down to submicron 
junctions’ area defined by means of direct laser writing. 
Direct measurements of the Nb/Al-AlN/Nb SIS 
junctions’ specific capacitance at GARD and NAOJ give 
the consistent results and confirm that the specific 
junction capacitance is ca. 20% lower than that for the 
Nb/Al-AlOx/Nb junctions.  
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Fig. 6. Specific capacitance of Nb/Al-AlN/Nb junctions (blue) as 
compared with that of Nb/Al-AlOx/Nb junctions [5] (red). The 
capacitance data for the junctions are approximated with semi-
empirical relation Cs = a / ln(Rn A) [7], where a is equal to 211 [5] for 
the Nb/Al-AlOx/Nb junctions and to 170 for the measured Nb/Al-
AlN/Nb junctions. The dark-blue dots are the data communicated by 
the other groups. 
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