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Abstract— We propose a linear to right-handed circularly
polarized tunable terahertz antenna. Polarization-switchable
graphene is used to enable tunable polarization conversion and
circular polarization. Polyimide is used as a substrate material
for designing THz components due to its low absorption. By
adjusting the graphene chemical potential to be between 0 eV to
0.8 eV, the polarization state in the 0.55 THz band can be
obtained without changing the physical geometry. The proposed
antenna has a significant potential for use in tunable terahertz
devices and related applications.
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l. INTRODUCTION

The electromagnetic radiation in frequency range 0.1-10
terahertz (THz) is known as the THz band of the
electromagnetic spectrum [1]. Wave manipulation in the THz
band is a technology of great significance for research and
applications of wireless communication, space exploration
and other related fields [2—3]. In recent years, manipulating
the polarization state of terahertz waves has also become an
important research area in high resolution imaging, terahertz
communication, remote sensing and other mid-infrared
applications [4-5]. On the other hand, as one of the key THz
devices, a polarized tunable antenna can effectively reduce
signal loss caused by polarization mismatch and multipath
effects, which has attracted increasing attention in recent
years. Traditional antennas’ polarization transformation
methods include birefringent materials, crystals, optical
gratings [6], controlling the on-off of a PIN diode [7], and
rotating converters to achieve different polarization states [8],
which have limitations such as high loss, large volume, and
requirements to change the physical structure. Recently,
polarization conversion using graphene switches in terahertz
band has become a new research hotspot [9].

Graphene is a two-dimensional material built up by carbon
atoms in a honeycomb lattice [10]. The Fermi energy levels of
graphene can be altered by using chemical doping or
electrostatic gating [11]. Such procedures change the
electrical conductivity of graphene, which makes graphene a
promising candidate for the design of tunable devices.
Therefore, graphene has been widely used in micro-nano
devices including sensors, absorbers, and antennas [9]. One

idea is to combine the antenna with graphene switches to
expand the polarization conversion functionality, in order to
enable tunable linear polarization and circular polarization
characteristics at the same working frequency band.

In this work, a tunable linear to right-handed circularly
polarized THz antenna is designed and studied. Graphene is
employed as a switch to achieve a reconstruction of the
polarization state. Polyimide is selected as a suitable dielectric
substrate for broadband THz components due to its low
absorption. By adjusting the chemical potential of graphene
between 0 eV and 0.8 eV, the working states of the circularly
polarized antenna and linearly polarized antenna can be
switched for operating frequencies around 1 THz (0.7-0.75
THz) without changing the physical geometry of the antenna.
This combination can easily create a multistate THz antenna
that can be used for the design of circularly polarized
antennas.

Il.  CoNDUCTIVITY MODEL OF GRAPHENE

The conductivity of graphene is provided by Kubo’s
equation [12], which is determined by both intra-band and
inter-band transitions.
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In these equations, kg is Boltzmann’s constant, e is the
electron charge, Er is the Fermi energy, o = 2xf is the angular
frequency, and h=h/(2n) is the reduced Planck’s constant. In
the simulations, T is the environmental temperature, which is
fixed at 300 K, G = 1/27 is the phenomenological scattering
rate, where t = 1 ps is the electron-phonon relaxation time.
The main advantage of graphene is that its surface
conductivity can be tuned by changing the Fermi energy. By
applying a transverse electric field through a bias gated
structure, Er can be adjusted over a wide range of energies
(between +1.0 eV), so the conductivity of graphene can be



controlled by a DC bias voltage. An approximate closed-form
expression relating the Fermi energy Er to the bias voltage Vq
is given by Ref [13].
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In Equation (4), vr is the Fermi velocity, which is fixed at
1.1 x 10® m/s, V, is the bias voltage, which can be artificially
controlled, & and ¢ are the permittivity of the vacuum and
dielectric, respectively, and ts is the thickness of the insulating
spacer. In summary, Equations (1)—(4) provide an effective
solution of the equations that dynamically control the
polarization state of the terahertz wave by the bias voltage.
Actually, by loading the graphene units as a switch on the
antenna configuration, the working modes of the designed
graphene-based antenna can be tuned by the adjustable surface
conductivity of the graphene.

IIl.  STRUCTUREOF THE PROPOSED THZ ANTENNA

The configuration of the designed THz antenna is shown
in Figure 1, which is printed on a polyimide substrate with
relative permittivity 3.5, thickness 6.25um, tangential loss
factor 0.008. It consists of a circular radiating patch as a driven
element in the center of the substrate and two parasitic
elements around it. In order to increase the capacitive load, the
distance between the parasitic elements and the driven
element is reduced, and thus the overall radius of the antenna
is reduced. The parasitic elements are connected to the driven
element through graphene switches. Metal layers in the two
sides of graphene can be used to provide a tunable graphene
complex conductivity through the electrostatic field effect and
produce varying chemical potential on the graphene stubs by
applying a gate bias voltage. The modified geometrical
parameters of the antenna are shown in Table I. The spectra
and the results in the present paper are obtained by using the
commercial 3D software CST Microwave Studio, based on
the Finite Integration Technique.
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Fig. 1. Structure of the proposed THz antenna.

TABLE I THE DETAIL PARAMETERS OF THE PROPOSED ANTENNA.

Parameters Dimension (um) Parameters  Dimension (um)
W 220 We 37
L 273 Le 65
D 175 Gr 3.2
Wp 57.3 Gp 35
Lp 89.5 - -

IV.  NUMERICAL RESULTS AND DISCUSSIONS

The purpose of the proposed design is to control the
polarization of a linearly polarized incident wave. The
designed structure can convert the polarization from linear to
right-hand circular polarization. This feature can be shown by
examining the axial ratio (AR) of the wave passing through
the structure. AR is the ratio of the cross-polarized wave to the
co-polarized wave, so for a perfect circular polarization
conversion, the AR should be equal to one. A 3-dB point can
be considered as the reference point for polarization
conversion. The performance of the proposed antenna has
been studied in the range of 0.1- 1.1 THz with the reflection
coefficient (|Suf), AR, and radiation pattern responses, as
shown in Fig. 2. The chemical potential of graphene switches
varies from 0 to 0.8 eV and the corresponding characterizes
for the linear and polarization agilities are illustrated in Fig.
2(b). For RHCP, impedance bandwidth fully covers the
corresponding 3-dB AR bandwidth at the center frequency of
0.55 THz. The minor polarization Z <0 is the LHCP and the
major is the RHCP for Z >0 for the proposed antenna.
Moreover, the antenna can be operated as a multi-
characterized antenna with different radiation patterns at the
same operating frequency, as verified in [7]. It is however not
studied in this work. The gain attained by the proposed
antenna is more than 0 dB with an efficiency of 40% at
different modes.
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Fig. 2. (a) |Su|, (b) AR, and (c) radiation patterns of the THz antenna at
different chemical potentials, left- and right-sides represent Phi=0° and 90°.

V. CONCLUSION

In summary, a linear to right-handed circularly polarized
tunable THz antenna is designed and studied. The
employment of graphene switches enables tunable
polarization conversion and circular polarization. By
electrically shifting the Fermi energy of two graphene
switches, the polarization state of the band can be changed
without changing the physical geometry. The proposed design
has a simple geometry, and gives a strong conversion from

linearly to circularly polarized waves at around of 0.55 THz
and it can be adjusted to any desired frequency range.
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