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Abstract— In this work we report the design of a single-layer 
all-metall dichroic filter with an improved spectral response at 
non-normal beam incidence and nearly equal performance for 
both polarizations. The dichroic is intended to be employed for 
dual-frequency receivers. Since the dichroic is produced purely 
from metal it facilitates its use at cryogenic temperatures. 
Therefore, the contribution to the system noise is minimized. 
The dichroic design concept demonstrated a measured 
transmission of electromagnetic radiation of 85-90% for both 
polarizations in the range of 35-50 GHz (37% fractional 
bandwidth). The measurements were performed at room 
temperature. The spectral properties of the dichroic have been 
optimized by modeling in 3D FEM simulation software.  
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I. INTRODUCTION  
Frequency-selective surfaces (FSSs) are widely used as 

dichroic quasi-optical filters, which allow either dividing a 
beam into two based on the frequency difference or 
combining beams from different sources generating different 
frequencies into a single beam for further processing. The 
idea of spacially dividing a beam is commonly found in 
astronomical applications since it has enabled the 
deployment of multi-band receivers for radio astronomy, 
multi-pixel systems for current and future facilities on Earth, 
and stratospheric and space astronomy missions [1,2]. There 
are numerous benefits of multi-pixel and multi-frequency 
receiver systems since they allow for increasing the mapping 
speed and spectral line surveys. Additionally, multi-
frequency enhances the phase calibration in high-frequency 
interferometric observations. Furthermore, the multi-
frequency receiver systems have the potential to provide 
unique information for future Very Large Baseline 
Interferometry (VLBI) observations [3]. All above, along 
with the continuous demand for improved instrument 
sensitivity, explains the increasing interest in developing 
state-of-the-art dichroic filters.  

Traditionally, a dichroic filter employs a sequence of 
several patterned metallic and dielectric layers, making the 
devices inherently sensitive to the control of linear 
dimensions of the pattern elements of each layer and the 
layers’ separation [4]. In fact, the geometrical properties 
such as the patterns’ shapes and sizes, their periodicity, and 
the thickness of the metal and dielectric layers determine the 
frequency response of any dichroic. Therefore, complicated 
configurations are utilized for improving different relevant 
aspects, such as transmission stability, cross-polarization 
levels, increasing the bandwidth, or reducing the angular 
degradation [5].  

In this work, we present a novel design and 
technologically simpler concept for dichroic filters using a 
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single metallic layer. The plate is perforated at an angle of 
θ=13 degrees with the perforation shape optimized to reduce 
the insertion loss, frequency response, dual-polarization 
capability, and operational bandwidth.  

 

II. DESIGN, SIMULATIONS, AND CHARACTERIZATION 
We have chosen to confirm the design feasibility and 

fabrication of the filter in the Q-band (35-50 GHz) as it could 
be further used in a VLBI Tri-band receiver planned for 
Onsala Space Observatory 20 m antenna. However, since the 
single-layer metal structure is used, the FSS filter is perfectly 
scalable to higher frequency bands and fabrication with, e.g. 
microfabrication techniques [6]. The proposed design is a 
single-layer FSS based on a metallic plate with tilted 
perforations of customized geometry as shown in Fig1. The 
unit hexagonal cells are depicted in Fig. 1 insert. The spectral 
response of a dichroic filter is determined by its geometrical 
parameters, i.e., the shape and size of the apertures, the 
aperture spacing, the thickness of the metal layer, and how 
the layers are arranged (in the case of multi-layer systems). 
The transmissivity and reflectivity of a dichroic filter also 
depend on the polarization orientation (horizontal or vertical) 
of the incoming electromagnetic wave and the angle of 
incidence, θ (AOI). The latter at non-normal beam incidence 
(e.g. θ≠0), affects the dichroic performance in a form known 
as angular degradation. Typically, this degradation causes a 
reduction of the RF bandwidth, shifting in the frequency cut-
off, resonance spikes in the pass-band, and increased levels 
of cross-polarization [7]. The AOI of θ = 13 degrees was 
aimed to be acceptable for the telescope optical systems as 
well as because of feasibility for the filter’s manufacturing 
that is critical for achieving desired performances. A 
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Fig. 1 Dichroic array showing an hexagonal layout. 
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hexagonal units cell array was chosen for its higher 
mechanical stability, however, at the expense of having a 
somewhat reduced bandwidth. 

Simulations of the dichroic filter and its optimization were 
performed using HFSS simulation software. Measurements 
of transmissivity of the fabricated filters as a function of 
frequency were carried out using a quasi-optical setup shown 
in Fig.2. Two spline-profile horns optimized for the Q-band 
frequency range are connected to a VNA and used as a 
transmitter (Tx) and a receiver (Rx) for the optical system 
consisting of 4 active mirrors. During the measurements 
dichroic filter (DUT) was placed across the collimated beam 
between the two M2 mirrors (see Fig. 2). The polarizations 
grids in front of the horns were implemented to improve the 
quality of the cross-polarization measurements. 

The simulated and measured performances of the 
designed dichroic filter at θ=13 degrees are presented in 
Fig.3 for POL0 and Fig.4 for POL1. Red and blue color 
circles correspond to co-polar transmission, and the cross-
hatched region indicates a frequency range where the 
transmission is over 90%, the level marked with a blue 
dashed horizontal line. As could be seen, the results of the 
measurements are in good agreement with the simulated 
data, especially for POL0, demonstrating a fractional 
bandwidth of 37%. 

 

III. CONCLUSION 
We have proposed a novel design for the dichroic filter 

based on a perforated metal plate. The proposed design can 
reach 90% of the transmission in at least 37% of the RF 
bandwidth around 42 GHz central frequency. The measured 
performance showed a very good agreement with the 
simulations for both polarization. The presented design is 
scaleable to higher frequencies and could be employed as a 
cold dichroic filter for providing simultaneous operation at 
higher frequencies, for instance, e.g. 230 and 345 GHz 
channels of the Event Horizont Telescope. 
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Fig.2. Designed optical system to characerize the dichroic filter. (Top) 
3D sketch of the optical assembly, the blue-shaded volume 
corresponds to the calculated quasi-optical beam. (Bottom) Optical 
train calculation for a beam at 42.5 GHz.. 

 

 
Fig.3 Simulated and measurement performance of the designed 
dichroic filter at the AOI of 13 degrees for one of polarization with 
horizontally oriented E–field (POL0). Red and blue color circles 
corresond to transmission .The partly filled region illustrates the 
frequency range between 37 and 52 GHz where the transmittion is over 
90% marked with a blue dashed horizontal line. 

 

 
Fig.4 Simulated and measurement performance of the designed 
dichroic filter at the AOI of 13 degrees for one of polarization with 
vertical oriented E–field (POL1). Red and blue color circles 
corresond to transmission .The partly filled region illustrates the 
frequency range between 37 and 50 GHz where the transmittion is 
over 90% marked with a blue dashed horizontal line. 
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