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Abstract—A new receiver channel covering the 271-377 GHz 
frequency band has been installed into the SEPIA receiver at 
the APEX telescope. The receiver channel was designed and 
built in an ALMA-compatible cartridge layout. The receiver 
has a dual polarization layout with OMT and employs 2SB SIS 
mixers featuring an extended 4-12 GHz IF band, providing 32 
GHz instantaneous IF bandwidth for two polarizations and two 
sidebands. 

Keywords—sub-mm receiver, SIS technology, dual-
polarization 

 

I. INTRODUCTION  
The frequency band between 200-425 GHz has been 

marked as the highest priority for the new generation of 
ALMA receivers in the “ALMA 2030” roadmap document 
because of its most direct impact on the new ALMA science 
goals [1]. The upper part of this band, corresponding to the 
ALMA Band 7, has quite many astrophysical important 
molecular transitions. The new generation of state-of-the-art 
receivers has to provide a wide IF band, which opens the 
possibility of performing science observations more 
effectively.  

The Atacama Pathfinder Experiment (APEX) telescope 
placed next to ALMA at the Chajnantor plateau in northern 
Chile has offered outstanding millimeter- and submillimeter-
wavelength observing possibilities [2]. A major component 
of the current set of APEX facility receivers is provided by 
the Swedish ESO PI Instrument for the APEX telescope 
(SEPIA), which is a multiband heterodyne instrument 
developed, designed, and built by the Group for Advanced 
Receiver Development (GARD), Onsala Space Observatory, 
Chalmers University of Technology, in collaboration with 
ESO [3]. This instrument features a cartridge layout that is 
fully compatible with ALMA technologies. The SEPIA 
instrument, therefore, provides a flexible platform for 
observations but also for testing different receivers. 

One of three SEPIA receiver channels, the SEPIA345 
receiver, operates over the frequency range of 271–377 GHz 
and was installed in 2020. The primary use of the receiver is 
to observe important molecular transitions (CO, CH3OH, and 
N2H+) as part of the single-dish spectroscopic observing 
program of APEX. Moreover, the SEPIA345 receiver also 
expands APEX participation in Very Large Baseline 
Interferometry (VLBI) observations for the Event Horizon 
Telescope (EHT) from 230 GHz to 345 GHz. In April 2022 
the SEPIA345 receiver channel was successfully used in 
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EHT test observations at 345 GHz. The scientific importance 
of EHT telescopes such as APEX moving to a higher 
observing frequency is that this gives longer VLBI baselines 
in terms of wavelengths, allowing higher-resolution images 
to be made of Super Massive Black Holes in the center of 
galaxies [4]. 

In this paper, we present the SEPIA345 receiver channel 
that covers 271-377 GHz and provides the IF bandwidth of 
4-12 GHz in 2SB and dual polarization configuration. 

 

II. RECEIVER DESIGN 
The SEPIA instrument occupies one of the facility 

positions inside the Nasmyth cabin A at the APEX telescope. 
The optics design implements a frequency-independent 
illumination of the secondary for all SEPIA receiver 
channels (159–722 GHz) with an edge taper of about −12 dB 
[5]. To be able to provide beam coupling in the limited cabin 
space, the SEPIA optics has a total of ten mirrors, including 
five warm mirrors. As part of the receiver verification, 
measurements of the beam at several signal frequencies were 
performed in the lab as near-field scans over the cryostat 
windows. The calculated Gaussivity was found to be about 
96%. 

The SEPIA345 receiver is built for dual polarization 
operation and utilizes the 2SB receiver architecture, as 
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Fig. 1 SEPIA345 receiver channel. a). receiver layout; b). the part of the 
mixer block containing mixer- and IF circutries; c). SIS mixer layout d). 
IF assembly of one of the sidebands consisting of a cryogenic isolator and 
a low noise amplifier (LNA). 
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shown in Fig.1a. An orthomode transducer (OMT) is 
employed for polarization split. Since both polarizations 
share the same feed horn, they are co-aligned on the sky. Lab 
measurement results confirmed a cross-polarization lower 
than −25 dB over the entire operational band. 

As any ALMA receiver channel, the SEPIA345 consists 
of a Cold Cartridge Assembly (CCA) and a Warm Cartridge 
Assembly (WCA). The WCA is the standard ALMA Band 7 
WCA produced by NRAO. The SEPIA345 CCA was 
designed from scratch and consists of the cold optics with 
two elliptical mirrors, corrugated feed horn, OMT, 2SB 
mixer blocks, IF chains, and DC bias circuitry with the LO 
multipliers installed at 110 K of the CCA. Details of the CCA 
are presented in Fig.2 [6]. 

In the 2SB mixer block, we integrated two 
Superconductor-Isolator-Superconductor (SIS) mixer chips, 
along with the RF and IF circuitries. The bottom part of the 
2SB mixer block is shown in Fig. 1b. As in the commonly 
used 2SB mixer configuration, the RF circuitry comprises a 
signal waveguide quadrature 3 dB hybrid and the LO 
injection directional couplers (with a coupling factor 
of -18dB). Mixer- and IF circuitries are also located inside 
each of the two mixer blocks. Waveguides' dimensions of 
380x760µm demand the strict fabrication accuracy of the 
receiver components. 

The mixer chips (shown in Fig. 1c) employ Nb/Al-
AlOx/Nb SIS in the twin-junction configuration [7] and have 
an area of 2.3 µm2; the SIS junctions have been fabricated 
in-house and the mixer chip employs 65µm thick quartz 
substrates [8]. The twin-junction tuning circuitry with a 
single-step transformer compensates for the reactance of the 
junctions in the RF signal band of 270-375 GHz. The 
transformer is formed on 360 nm of SiO2 sputtered on top of 

the RF choke, serving as a ground layer for the tuning 
circuitry. The extraction of the IF signal occurs at an 
additional port situated close to the SIS mixers and via a 
landing capacitor (Fig. 1c) and enhances the flatness of the 
IF response across the 4–12 GHz band. 

The IF circuitry comprises two IF matching transformers, 
two bias-Ts, and an IF 90-degree hybrid integrated on the 
same 20 mils thick alumina substrate as depicted in Fig. 1b, 
enabling a broader IF bandwidth of 4-12 GHz for each 
sideband. Further amplification at IF is performed by low-
noise cryogenic amplifiers (LNAs) preceded by 4–12 GHz 
isolators, as shown in Fig.1d. As a result, 16 GHz (2 × 8 
GHz) of instantaneous IF bandwidth is reached per 
polarization. 

The LO (283–365 GHz) is an integral part of the WCA 
produced by the National Radio Astronomy Observatory 
(NRAO) and uses a direct multiplication LO chain (x18), 
following a Yttrium Iron Garnet (YIG) oscillator. The last 
frequency multipliers (×3) for each polarization are mounted 
inside the CCA at the 110K stage. The YIG oscillator, LO 
chain components, as well as warm IF amplifiers are located 
in the Warm Cartridge Assembly (WCA), which is attached 
to the CCA. Amplified IF signal is processed further with the 
help of the APEX IF processor and the (Fast Fourier 
Transformer Spectrometer) FFTS. As a result, 4–12 GHz IF 
bandwidth for each side-band and polarization is divided into 
two 4-GHz-wide bands. The FFTS provides spectral 
resolution of up to 64000 channels per 4 GHz of input 
bandwidth. 

 

III. CHARACTERIZATION OF THE RECEIVER AT THE 
TELESCOPE 

The technical verification of SEPIA345 at the APEX 
telescope took place in 2020. The science commissioning of 
the receiver band was then continuously performed until the 
middle of 2021. 

The receiver noise temperatures were measured over the 
full RF band by tuning the LO in steps of 0.5 GHz with help 
of the facility calibration unit (FCU) following a standard 
COLD-HOT-SKY calibration procedure per sideband and 
polarization. Results of such measurements averaged over 
each 4-GHz-wide FFTS section are presented in Fig.3 [6]. 

 
Fig.2 SEPIA345 Cold Cartridge Assembly (CCA) layout [6]. The 
follow-ing components are marked: 1- first cold mirror; 2 - second 
cold mir-ror; 3 - orthomode transducer (OMT); 4 - 2SB mixer 
block at Pol0; 5-2SB mixer block at Pol1; 6 - magnetic coil 
assembly at Pol0; 7 - magnetic coil assembly at Pol1; 8 - LSB and 
USB IF assemblies at Pol0; 9 - LSB and USB IF assemblies at 
Pol1; 10 - 4K plate; 11 - 15K plate; 12 - 110K plate; 13 - room 
temperature plate. 

 

 

 

 
Fig.3 SSB receiver noise temperature measurements performed for each 
polarization and sideband averaged over each 4.0-GHz-wide FFTS IF 
sub-band. The temperature in the higher IF section (8–12 GHz) is 
illustrated with blue (Pol0) and violet squares (Pol1). The results in the 
inner segment (4–8 GHz) are shown with red (Pol0) and green squares 
(Pol1). 
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The sideband rejection ratio (SBRR) plays an important 
role in the ability to perform high-quality science 
observations since these require as little contamination as 
possible in the signal band from lines in the image band. 
This is especially true for the single-dish observations. In 
the case of astronomical sources with high spectral line 
density, a poor SBRR may, for instance, hamper line 
identification. From our measurements, the average SBRR is 
as low as –18 dB. The Pol0 mixer demonstrates SBRR 
average values around –20 dB, while Pol1 channel average 
values lie around –15 dB [6]. These results are in line with 
measurements performed on-sky by observing the WB 947 
source with strong and narrow CO J = 3 → 2 line [6]. In this 
experiment, the CO line was placed at different parts of the 
IF band, by retuning the LO. For each LO setting, the SBRR 
was evaluated by measuring the intensity ratio of the weakly 
appearing image line to the signal line. 

Stability is one of the most important receiver parameters. 
A standard method to characterize receiver stability is 
performing measurements of the Allan variance [9]. These 
measurements took place while the telescope was standing 
still (stowed). The cold load of the FCU was providing more 
stable conditions than the cabin ambient temperature while 
data was being collected over several hours. The total power 
Allan time was measured in small sub-bands combining 
consecutive FFTS channels, spanning a total bandwidth of 
125 MHz per sub-band. In Fig. 4, we show the total power 
Allan variance that was obtained using the Pol0 USB within 
a 125-MHz-wide sub-band within the 4–8 GHz FFTS 
segment at the LO frequency of 297 GHz. This frequency is 
recommended for continuum observations as it is relatively 
free of atmospheric features. The spectroscopic Allan times 
are calculated by creating smaller sub-bands combining a 
few consecutive FFTS channels, spanning 1.0 MHz in total. 
Then, the signals of two of these 1.0 MHz sub-bands are 
subtracted, and their noise characteristics are inspected to 
have a more complete overview.  

An example of the spectroscopic Allan variance 
measurements is displayed in Fig. 5. These measurements 
were performed with Pol1 mixers at the 345 GHz USB in the 
4–8 GHz FFTS IF section using the difference between two 
different 1.0-MHz-wide sub-bands, some 1.8 GHz apart. The 
Allan time is estimated to be larger than 850 s. 

In a frame of science verification, among many other tests, 
observations of the water maser at 321 GHz toward VY CMa 
have been performed. The water maser emission originates 
from energy levels near 2000 K in excitation energy. It can 
be considered as a point source concerning the APEX beam 
size at 321 GHz. Fig.6 shows this water maser line. 

 

IV. CONCLUSION 
The SEPIA345 receiver channel, installed at the APEX 

telescope in February 2020, covers a signal band of 271–377 
GHz. The dual polarization receiver employs 2SB SIS 
mixers and offers an instantaneous IF bandwidth of 
4×8 GHz. The receiver has an average SBRR of –20 dB and 
–15 dB measured at the telescope for the Pol0 and Pol1 mixer 
channels, respectively. The receiver stability measurements 
demonstrate typical total power Allan times on average 
larger than 10 s in the 125 MHz effective noise bandwidth 
and better than 60 s spectroscopic Allan times in the 1 MHz 
effective noise bandwidth. The SEPIA345 receiver become 
one of the APEX facility instruments and is now available to 
all APEX observers. 
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Fig.4 Example of total power Allan variance measurement performed 
for Pol0 LSB within a 125-MHz-wide sub-band in the 4–8 GHz FFTS 
segment at the LO frequency of 297 GHz. 

 

 
Fig.5 Example of a spectroscopic power Allan variance measurements 
at a signal frequency of 345 GHz. The FFTS response was recorded for 
more than 13 hours. 

 

 
Fig.6 The observed H2O 321 GHz maser spectrum towards the red 
supegiant VY CMa  
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