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NOTES: 

  

Kinetic Inductance Detectors (KIDs) have been proven to 
be an interesting technology for continuum detection from 
the mm-wave to infrared frequencies. Their intrinsic 
multiplexibility makes the fabrication of large arrays 
relatively simple, and a number of instruments have shown 
high quality performance on telescope, while many more 
instruments employing this technology are being developed.  

A major challenge in fabricating large KID arrays is the 
frequency scatter of individual detectors, due to fabrication 
imperfections. This frequency scatter inevitably causes cross 
talk when two pixels get too close in resonance frequency. 
This problem can be mitigated at the expense of increasing 
the available frequency bandwidth per pixel, but this 
approach significantly limits the possible number of pixels, 
and is therefore not preferred especially when readout 
bandwidth is a scarce resource.  

In a previous contribution, we have shown that the 
frequency scatter of a small KID array of 100 pixels can be 
repaired by a post-characterization adaptation of the on-chip 
capacitors. Here we will show that this technique can be 
extended to 2000-pixel telescope class arrays [2], with 
marginal loss of efficiency. A detailed mapping of the 
dimensions of 800 pixels shows that the frequency scatter for 
this 80-mm array is most impacted by the lateral variations 
of the width of the inductor lines (up to 20% variations). 

 
Figure 1 - Fractional frequency deviation of a telescope-class KID 
array before (red) and after (blue) trimming the on-chip capacitors. 
A more than 10x improvement of the frequency spread can be 
obtained. 
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Although the frequency scatter can be repaired by our 
technique, the width variation of the inductor line also causes 
a variation in pixel sensitivity, which cannot be as easily 
repaired. In a second part of our contribution, we will 
therefore focus on the underlying causes for the 
inhomogeneity itself. We will show that the width variations 
are due to an inhomogeneity in the wet etching of the 
aluminium film. We will show pathways to attack the 
inhomogeneity at its source and show the prospects for 
telescope class arrays.  

 
Figure 2 - Resonator frequency shift as measured (left) and 

calculated (right) from measured resonator dimensions. 

REFERENCES 
[1] S. Shu et al., “Increased multiplexing of superconducting 
microresonator arrays by post-characterization adaptation  
of the on-chip capacitors”, Appl. Phys. Lett. 113, 082603 
(2018).  
[2] S. Shu et al., “Understanding and minimizing resonance 
frequency deviations on a 4-in. kilo-pixel kinetic inductance 
detector array”, Appl. Phys. Lett. 119, 092601 (2021), 
 

 

degradation of Qi. The heat sinking of this array is determined by the
contact between the backshort Al film and the Al sample holder. In a
similar measurement, we observed that using an Al–Au bilayer as a
backshort and a copper sample holder increased the Qi from 3! 103

to 10! 103 under a 300K optical loading. Because the backside Al is
re-deposited, as described above, we suggest that the decrease in Qi is
due to a decrease in heat sinking. This could be remedied by using a
Ti–Au bilayer backshort, which can trap phonons,15 improve heat-
sinking, and is resistant to the Al etching process.

The yield of this array was measured under the 110K blackbody
radiation, a typical on-telescope condition. For reference, the on-
telescope sky background radiation varies from 30K to 180K depend-
ing on the atmospheric opacity.16 After trimming, the yield is
increased from 69% to 76% counted from optical mapping results. For
all counted pixels, no crosstalk is observed from the two-dimensional
mapping results, with the signal to noise ratio of 10. 45 resonators, are
missed by the readout system due to the limited number of readout
tones. Including these missed resonators, the final yield is 81%, 10%
higher than the on-telescope yield of the current NIKA2 260GHz
array,3 while the initial fabrication yield is 84% for both arrays. The
yield could be further increased by improving our fabrication process.
23 resonances were broken during the trimming process, giving the
trimming fabrication yield of 97%.

In conclusion, we have studied and minimized the resonance fre-
quency deviations in a 4-in. kilo-pixel LEKID array. The calculation
agrees with the measurement within an accuracy of 625! 10"3. The
decrease in the optical-loaded quality factor, after trimming, could be
explained by a degradation of the heat sinking instead of a film
property change. After trimming, the mapping yield, measured
under a 110K background, is improved from 69% to 76%, which can
be further improved to 81% after updating our readout system. This
7%–12% improvement in yield within fixed readout bandwidth
suggests that the trimming technique is capable to improve the on-
telescope yield, which may benefit future large-format LEKID arrays.

See the supplementary material for the design in detail.
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FIG. 3. (a) Histogram of Qi under a 110 K blackbody radiation before and after trim-
ming. The resonances shown in the histogram as Qi¼ 0 do not have proper fitting
results possibly due to frequency collision. (b) Peak resonator responses of the
300 K source.

FIG. 2. (a) df=f map after trimming. (b) Histograms of df=f before and after trim-
ming. (c) Comparison of the trimming results on all resonators and the resonance
frequencies identified resonators. The difference suggests the inter/extrapolation
gives a similar result. A two Gaussian fit of df=f of the identified resonators is plot-
ted (dashed line), which gives l1 ¼ "7:8! 10"4 and r1 ¼ 3:1! 10"4 and
l2 ¼ 3:9! 10"4 and r2 ¼ 3:4! 10"4.
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part of the backside 200nm Al was etched away, so a new layer of
200nm Al was sputtered on top of the Al residue.

After trimming, the array was re-bonded and cooled down to
100 mK using the same setup as in the first characterization. S21 and
mapping measurements are applied on the same three feedlines. The
resonance frequencies after trimming fremeas range as the redesigned
frequency fredes. After trimming, the overall standard deviation of df =f
is 1:13! 10"3, improved by a factor of 14. For the resonators identi-
fied beforehand, the standard deviation is df =f is 0:96! 10"3, indi-
cating that the radial basis function used to inter/extrapolate the
resonance frequencies works well on large format arrays. We also
notice that trimming one or two pairs of IDC fingers give similar
accuracy.

Figure 2(a) shows two groups of resonators on the array, with
a similar standard deviation of #3! 10"4 but different mean val-
ues. One group has df =f < 0, and its mean value of "1.7MHz is
consistent with previous trimming results,9,10 due to Al film aging.
The other resonator group with df =f > 0 is located at the upper
region of the array, partly overlapping with where the residuals
>15! 10"3. From the residual map [Fig. 1(g)], we know that this
region has a lower Ls compared with calculation, indicating a lower
Rs. However, this should not give two groups of df =f if aging hap-
pens uniformly. This positive df =f suggests that Ls is either
unchanged (no aging) or slightly increased, as Ls should not
decrease. By checking previous data, we confirm that this AlOx
pattern was reproducible. One possible reason is nonuniformity of
the argon plasma cleaning, just before the Al deposition, which

creates a varying roughness of the substrate. Larger substrate
roughness would facilitate film ageing.

Qc and Qi are extracted from S21 measured using VNA under
a 110 K background. After trimming, Qc # 104 remains the same,
while Qi is decreased by 40% from 14! 103 to 8:4! 103. As using
a 40 K background radiation gives 25% higher Qi in both cases, Qi

here are limited by the 110 K background radiation. In a previous
experiment, we observed an average dark Qi of 60! 103 after trim-
ming, much higher than the optical Qi here. The film aging and the
trimming process may have little effect on our Qi, which is limited
by the loss of quasiparticles created by photons. To compare the
sensitivity, we directly take the peak response of the mapping
source, shown in Fig. 3(b), as the noise is dominated by the 1=f
noise of the background temperature variation and the readout
board. The peak response of the mapping source decreases from
4.6 to 3.9 kHz after trimming (Fig. 3), consistent with the 21%
decrease in Qr from 9:3! 103 to 7:3! 103.

As the inductor geometry is untouched during trimming and the
background temperature of the mapping system is stable, we can
remove the influence of dimensions and incident power. The high
trimming accuracy of jdf =f j < 2! 10"3 suggests that the change in
sheet resistance Rs and gap energy D of the Al film should also be at
the same level, according to Ls ¼ !hRs=pD, which cannot explain the
40% degradation of Qi. Using Mattis–Bardeen theory,14 the equivalent
temperatures corresponding to the observed Qi are 334 and 361 mK
before and after trimming, much larger than the 100 mK bath temper-
ature, suggesting that a small change in heat sinking may give this

FIG. 1. (a) Al thickness map measured using ellipsometer. (b) Inductor width map measured using SEM. (c) Capacitor width map measured using SEM. (d) The measured
fractional frequency deviation before trimming. (e) The calculated fractional frequency deviation. (f) The difference of df=f between (d) and (e). (g) AlOx thickness map mea-
sured using ellipsometer.
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