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Abstract— This paper presents the optical design, 

calibration, and receiver of the new fully polarimetric 

temperature radiometer operating around 53 GHz 

(TEMPERA-C) from the University of Bern for ground-

based measurement campaigns. The optical setup will allow 

for elevation scanning, minimises cross-polar 

characteristics, and is more compact than the previous 

iteration of the instrument. The optics have been optimised 

using the GRASP software and the results are presented 

here.  
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I. INTRODUCTION 

The current iteration [1] of the TEMPERA instrument is 

a linearly polarised radiometer at 50 GHz in a stationary 

configuration at the University of Bern which has been 

used operationally to retrieve atmospheric temperatures 

up to 50 km altitude. However, there is interest in 

extending the altitude of these retrievals and enabling 

campaign measurements at other locations such as the 

Jungfraujoch (3500 m) which is ideal for reaching 

higher retrieval altitudes but requires an 

environmentally resistant instrument.  Hence, an 

updated version of the instrument has been developed 

which is fully polarimetric and is combined with a more 

optimised retrieval that considers the Zeeman effect [1] 

which is currently limiting the vertical range of the 

retrieval. Resolving the difference between the left- and 

right-hand polarised emission will make it possible to 

push the temperature sounding higher into the lower 

mesosphere. Along with redesigning the optics for 

polarimetry, emphasis was placed on reducing the size 

to create a compact and portable instrument. This 

optimisation has been carried out using the GRASP 

software by Ticra.  

 

II. OPTICAL SETUP 

The optical setup (see Fig. 1) consists of a custom 

designed corrugated, highly gaussian feedhorn (yellow) 

positioned in the horizontal with a gain of 20.13 dB 

illuminating a 22.5° off-axis parabolic reflector (orange) 

with a diameter of 190mm and an edge taper >30dB.  

The off-axis angle is minimised to avoid induced 

asymmetries in the farfield beam. The beam is reflected 

upwards to a circular plane reflector (green). A path 

length modulation mechanism is used for the mounting 
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of this reflector to account for standing waves. The 

reflector alternates between two fixed positions by 

rotating 180°, either directing the beam to the internal 

calibration target (black) or to the skyward plane 

reflector (blue). The skyward reflector is mounted in a 

periscope structure (grey) which can be rotated in the 

elevation plane to allow for off-zenith measurements. 

The purpose of the periscope structure (which is not 

shown in its full extend in Fig. 2) is to protect the 

instrument during rain- and snowfall, by pointing it 

towards ground. Some microwave transparent material 

could be used to seal the periscope but would introduce 

unnecessary reflections or standing waves especially if 

the window is painted with a water-resistant coating.  

 

III. RECEIVER 

The receiver of Tempera-C is designed to 

simultaneously observe all four Stokes parameters. The 

frontend of Tempera-C splits the signal into vertical and 

horizontal polarisation, using an ortho-mode transducer 

(OMT). Both polarisation chains are identical, 

eliminating phase differences between the two when 

they are combined in the correlator. The following 

sentences describe a single chain for simplicity. A 

coupler right after the OMT facilitates adding a noise 

diode signal for gain calibration. After a bandpass filter, 

the signal is downconverted using a heterodyne mixer 

and then split into two. Both signals are supplied to the 

 Optics for the TEMPERA-C polarimetric middle atmosphere temperature 
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Fig. 1. GRASP model of TEMPERA-C optics in OBCT scan mode 
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spectrometer (so four inputs – two per polarisation). In 

the spectrometer the signals are downconverted further 

to two different frequencies and digitised with a 

sampling rate of 200MHz. This allows the spectrometer 

to process two lines simultaneously, in this case 

corresponding to 53.0669 GHz and 53.596 GHz. The 

digital correlator inside the spectrometer then combines 

both polarisations to extract the third and fourth Stokes 

parameter. Since the correlation is done purely digitally, 

it removes a potential error source and is the key 

advantage of this setup for polarimetry. The 

spectrometer used for Tempera-C is based on a 

commercially available Universal Software Radio 

Peripheral and a FPGA firmware developed in-house 

for the real-time FFT processing and complex cross-

correlation.  

IV. SIMULATED INSTRUMENT PERFORMANCE 

The optics of Tempera-C were designed using an ideal 

gaussian beam approximation and consequently 

optimised and simulated with the simulated pattern of 

the actual feedhorn using the GRASP package from 

Ticra. The horn was selected based on its very low 

crosspolar levels. A comparison of the simulated pattern 

against measurements can be found below in Fig. 3.  

Key performance criteria for the instrument are a full 

width half maximum of <4°, minimised spillover and 

low cross-polar component. Fig. 4 shows the farfield 

beams in zenith for two orthogonal polarisations as 

simulated in GRASP on a Phi, Theta grid. At low power 

levels (< -20dB), some small aberrations can be seen, 

due to the off-axis reflector. The total spillover of the 

instrument is less than 0.2%, including consideration of 

the periscope tube.  

To check the bias introduced by the optics the product 

of the co-polar pattern of one plane and the cross-polar 

pattern of the orthogonal plane is calculated. In Fig. 4 it 

is the product of the two fields forming a column. The 

sum of these two products is the bias seen in the third 

stokes by the digital correlator. Assuming the horn 

pattern is symmetrical, the bias of the horn farfield 

using this methodology would be zero, as any bias in 

the individual chain would be identical to the other 

chain, but with a flipped sign and cancel out. This was 

verified in GRASP with the real pattern and a gaussian 

pattern to verify the approach. In the farfield of the 

instrument (including the optics) at zenith pointing the 

bias is the equivalent of –2.6mK, for a homogenous 

scene of 300K.  

 

 

 

 

 

Fig. 2. Schematic of Tempera-C receiver 

Fig. 3. Tempera-C horn measurements in comparison to simulation. 

Co- and Cross-polar simulation in violet and yellow. Measurements in 

red and blue. 

Fig. 4. Farfield patterns of Tempera-C for two orthogonal 

polarisations 
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V. CALIBRATION  

The instrument includes a wedge-shaped ambient load 

for calibration. In addition to the ambient load, the noise 

diodes in both frontend chains allow calibration without 

the constant use of a cold load. Periodically, this 

calibration methodology is validated using a liquid 

nitrogen cold load positioned below the skyward 

reflector, which can be rotated to point to ground. The 

ambient wedge is rotated 45° to both the horizontal and 

vertical polarisation for consistent performance across 

both polarisations. The ambient load is based on an 

existing design developed by University of Bern for the 

Arctic Weather Satellite [3], including an absorber 

mixture which was developed inhouse. Test data of the 

Arctic Weather Satellite wedge load show a return loss 

of 55 to 65 dB across the Tempera-C band. A cone 

would be a preferable shape since it is polarisation 

independent geometry but is harder to manufacture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

The Institute of Applied Physics is building a new fully 

polarimetric radiometer called TEMPERA-C, which 

allows to measure the for Stokes parameters 

simultaneously and to resolve the circular polarization 

which is caused by the Zeeman splitting of the oxygen 

emission lines. The new design raises the retrieval 

altitude into the lower mesosphere and the instrument 

will also be capable of measurement campaigns. As part 

of the optics redesign, an ultra-gaussian feedhorn was 

optimised along with more compact optics. The 

radiometer includes two identical receiver chains and a 

digital correlator which will eliminate error sources for 

the correlation. However, the optics could introduce a 

bias, which was investigated and found 2.6mK for a 

300K homogenous scene in zenith. Further work is 

required to investigate this bias for other scan angles 

and inhomogeneous scenes.  
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respectively) return loss of OBCT.  
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