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Abstract—The sensitivity and spatial form of the individual 

optical modes to which a potentially few-moded direct detector 

is sensitive can be determined by the complex valued coherence 

matrix from two identical sources as they are scanned through 

the field of view. We provide experimental verification of this 

technique using THz photomixers and MKIDs. 

Keywords—Energy Absorption Interferometry, photomixer, 

partial coherence, verification techniques 

I. INTRODUCTION 

Astronomical imaging and spectroscopy in the THz domain 

typically involves the study of formation and evolution of 

planetary, stellar, and galactic systems. Resolution, 

throughput, and bandwidth requirements for instruments 

operating at these wavelengths are all key parameters which 

drive limitations on the size and density of detectors [1, 2]. 

It is generally the case that these requirements drive the 

optimum size of detectors to be similar to the wavelengths 

measured, such that they exhibit a few-moded response to 

incoming radiation. In such a regime, the detector beam 

pattern cannot be fully represented by a fully coherent 

response, as is the case for single-moded detectors. In 

addition, the system also cannot be fully described using 

geometric optics and radiative transfer models, such as 

typically used in the infrared and visible domains.  

Understanding few-moded power absorbing detectors 

requires a method to measure the number and relative 

sensitivities of the natural modes, as well as their spatial 

forms. 
 

In this work, we applied Energy Absorption 

Interferometry (EAI) [3], which is a technique by which the 

coherent properties of any power absorbing structure can be 

measured, to an end-to-end THz optical system including 

detectors. In doing so, we demonstrated we were able to 

recover a complex valued correlation matrix which described 

sensitivity of the system in terms of individually coherent 

natural modes.  

We introduced two independent source probes in the field 

of view of an optical system, which while being spatially 

decoupled, exhibited identical beam profiles, were frequency 

matched, and the relative phase between the sources could 

be adjusted. The sources were independently scanned 

throughout the field of view, and at each pair of positions, 

the relative phase was varied and an interference fringe was 

measured. Extracting the phase and amplitude of the fringe 

allowed us to construct a directly measured representation of 

the spatial correlation matrix of the complete optical system. 

Such a matrix could be propagated through the optical 

system, and decomposed into a weighted set of orthogonal 
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functions which represented the individually coherent 

optical modes of the system. 

II. THEORY 

Wolf shows that 𝜆𝑖 and 𝜓𝑖 , which are the eigenvalues and 

eigenfunctions which describe the natural modes and relative 

sensitivities of a partially coherent beam, are eigenfunctions 

and eigenvalues of the following equation [4],  

∫𝑊
𝐷

(𝐫1, 𝐫2) ⋅ 𝜓𝑛(𝐫1)𝑑
3𝐫1 = 𝜆𝑛𝜓𝑛(𝐫2), 

Where 𝑊(𝐫1, 𝐫2, 𝜈0) is the cross-spectral density of an 

optical beam evaluated at a single frequency, 𝜈0, and 𝒓𝒊 are 

position vectors within the domain 𝐷,  

Withington et al. show that the power coupling of the 

system to a source is a projection of the cross-spectral 

density of the detector beam, 𝐷(𝐫1,  𝐫2), as well as the cross-

spectral density of the source field, 𝐸(𝐫1,  𝐫2) evaluated over 

an arbitrary plane 𝑆 which forms a cross-section of the 

beam [3], 

⟨𝑃⟩ = ∬ 𝐷(𝐫1, 𝐫2) ⋅⋅ 𝐸(𝐫1, 𝐫2)𝑑
2𝐫1𝑑

2𝐫2
𝑆2

. 

By illuminating a system under test with two independent 

monochromatic point sources, the power measured at the 

detector can be represented by [5], 

⟨𝑃(𝜙)⟩ = 𝐷𝑚,𝑚 + 𝐷𝑚′ ,𝑚′ + 2 |𝐷𝑚,𝑚′|cos(𝜙 + 𝜃𝑚,𝑚′), 

Where 𝑚,𝑚′ are discrete position indices of the two 

sources, |𝐷𝑚, 𝑚′| and 𝜃𝑚,𝑚′  are the amplitude and phase of 

the discretized version of complex-valued cross-spectral 

density at coordinates 𝑚 and 𝑚′. If the relative phase 

difference between the sources, 𝜙, can be systematically 

adjusted, |𝐷𝑚, 𝑚′| and 𝜃𝑚,𝑚′  can be measured as the complex 

amplitude of the resulting fringe. Repeating over all possible 

pairs of position coordinates with a plane with sufficient 

sampling and size recreates the full discretized cross-spectral 

density matrix of the system under test, which we call the 

detector response function (DRF). 

III. SETUP 

We created two phase-matched, frequency-tunable 

monochromatic THz source by photomixing two infrared 

lasers in two identical GaAs photomixers [6]. The two 

sources are driven with the same pair of lasers, using a 2x2 

fiber optic splitter. Phase rotation is applied with fiber 

stretchers, which modify the differential length between the 

optical paths [7]. Each source is mounted on a motorized 

xyz-stage, and the output THz beams are coupled together in 

free-space with a Mylar beamsplitter. 
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IV. RESULTS 

The DRF was produced by recording the amplitude and 

phase of the fringe pattern for each source position pair. The 

amplitude and phase of the complex DRF is shown in Fig. 1. 

We limited the source position points to include only a single 

cut of the focal plane, but at a diagonal between the E- and 

H- planes such that the cut intersected non-zero regions of 

both the simulated co- and cross- polarization responses of 

the system. 

Using a technique similar to angular plane wave spectrum 

(APWS) decomposition and propagation [8], we were able 

to propagate the measured DRF from an arbitrary 

measurement plane to an image plane of the system under 

test. This approach also allowed for spatial filtering of the 

DRF to limit the impact of detector noise and straylight on 

the recovery of the natural modes. 

 

Fig. 1. Amplitude and phase of the complex valued detector response 
function (DRF) produced by measuring correlations between two point 

sources over a one-dimensional cut of an instrument beam pattern. 

A diagonalization of the DRF matrix, utilizing singular 

value decomposition (SVD) allowed the extraction of the 

eigenvalues and eigenvectors, which corresponded to the 

sensitivity and spatial form of the natural modes (Fig. 2). 

The demonstration described in this work proved that this 

detector  could be described as having a single dominant 

spatial mode and that cross-pol and surface wave stray light 

can be described as coherent with the main antenna response, 

at least within measurement accuracy. This would not be 

expected in a intrinsically multi-moded detector, like a 

distributed absorber detector. Application of this technique 

to such detectors will be a topic of future focus, as it has 

implications for how they couple, particularly for application 

in wideband instruments such as Herschel/SPIRE and 

SPICA/SAFARI [9].   

 

 

Fig. 2. Extracted sensitivity (top) and spatial form (bottom) of the natural 

modes extracted from the one-dimensional DRF. 
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