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Frequency Locking of a 4.7 THz Quantum Cascade
Laser using a Delay Line
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Abstract—Quantum Cascade Lasers (QCLs) are powerful
monochromatic radiation sources at higher THz frequencies
and are highly favorable for heterodyne receivers such as the
upGREAT of the SOFIA telescope. Apart from their advantages,
they can suffer from different line-broadening mechanisms, such
as optical feedback, that broaden the effective linewidth and
reduce the receiver’s spectral resolution. In this work, we present
frequency stabilization of a 4.7 THz QCL based on a delay line
frequency discriminator. The latter comprises a power divider, a
delay line, and a double-balanced mixer that forms a frequency
discrimination constant of 91.5 mV/MHz. The QCL emission
is down-converted with the help of a Superlattice harmonic
generator and mixer, itself pumped with a diode multiplier chain
at 182.6 GHz. The QCL line in the intermediate frequency band
is then amplified and filtered to feed the frequency discriminator,
where its output is used to stabilize the QCL frequency. More
than 10 MHz of frequency deviations can be reduced to a static
and stable line with an FWHM of 780 kHz.

Index Terms—Quantum Cascade Laser, Local Oscillator, Fre-
quency stabilization, Delay line frequency discriminator, Super-
lattice harmonic generator and mixer

I. INTRODUCTION

QCLs are the most convenient sources of THz emission
at higher THz Frequencies, such as 4.7 THz [1]. Heterodyne
receivers operating at these frequencies, therefore, use them
as Local Oscillators (LO). UpGREAT of the SOFIA telescope
and STO and GUSTO balloon-born missions are examples of
such receivers. QCLs usually suffer from different mechanisms
that broaden the effective linewidth of the laser. These include
current noise, temperature fluctuations, and optical feedback.
Since in a heterodyne receiver, the LO line shape convolves
with the observed line, frequency stabilization of the LO even-
tually increases the spectral resolving power of the receiver.
In addition, providing an absolute frequency reference for the
QCLs will increase the frequency accuracy of those receivers.

II. DELAY LINE FREQUENCY DISCRIMINATOR

In order to stabilize the frequency, it is crucial to be able
to discriminate it with a frequency detector. This frequency
discriminator works as the following. Since this experiment
is heterodyne, a small, down-converted signal from the QCL
is available in the IF. A power divider divides this signal
into two equal amplitude outputs. One is delayed through the
delay line cable, and both are mixed with a double-balanced
mixer. Both mixer inputs have the same frequency, but the
phase difference between them is frequency dependent due
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Fig. 1. The output of the delay line frequency discriminator during a
frequency sweep with a rate of 1 MHz/s, centered at 400 MHz. The shown
slope in this measurement is taken as a calibration of frequency to voltage
conversion of this frequency discriminator.

to the delay. As a result, a DC is created at the output of
the mixer, which is variable with the frequency of the input.
Figure 1 shows this DC output during a frequency sweep as a
calibration measurement. One can also see this as a Michelson
interferometer with unequal arm length. When the frequency
of incoming light changes, the brightness of the fringe changes
subsequently.

III. METHOD

Figure 2 shows the schematic of this experiment. The QCL
is housed inside a pulse-tube cryostat where the coldhead is
thermally coupled and mechanically isolated from the QCL.
QCL’s emission is coupled to a superlattice harmonic generator
and mixer (SLD) [2] using three mirrors. The SLD is pumped
with the mm-wave power generated in a VDI diode multiplier
chain with the 26th harmonic close to the QCL frequency. The
SLD also mixes the two signals, and the difference signal is
extracted at the IF port of the SLD. The latter is amplified and
band-pass filtered to the optimum level to drive the frequency
discriminator. The latter detects the frequency deviations and
creates a proportional voltage, which is processed in the con-
trol electronics to form the correction signal. This correction
signal is then added to the QCL current, and since the QCL
frequency is current tunable, the correct settings on the control
electronics stabilize the QCL’s frequency.

IV. EXPERIMENTAL SETUP

Figure 3 shows a photo of the experimental setup. The
QCL is running at a current of 160 mA and 32 K bath
temperature. The SLD is pumped with the diode multiplier
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Fig. 2. Schematic of the experiment.

chain generating 182.6 GHz. The SLD’s IF output contains
the down-converted QCL signal of 9 dB over the noise floor
(Resolution Bandwidth = 3 MHz) at an IF frequency of 400
MHz. While amplifying, it is essential to filter the wide-
band noise generated by the SLD. The delay line is a 10-
meter coax cable that introduces 50 ns of delay, resulting
in a 91.5 mV/MHz frequency discrimination constant. The
high-frequency products in the mixer are dumped into a 50-
ohm termination load. The low-frequency components are
processed in an OPAMP circuit as an amplifier and filter,
where its output is the correction signal.

V. RESULTS

Before stabilization, the spectrum of the QCL emission
suffered from more than 10 MHz of frequency fluctuations.
Figure 4 presents the IF output spectrum with the stabilized
QCL. An FWHM of 780 kHz corresponds to the width of
the Gaussian function fitted to the QCL line. The narrow dips
on the plots correspond to three SDR channels that were not
functional, and they were excluded in the Gaussian fit. During
the measurement, it was understood that the primary source
of the frequency instabilities in this experiment had been the
optical feedback to the laser: Inserting attenuators in the beam
reduced the strength of frequency modulation. Stabilization
could be kept for many hours, and the method showed the

Fig. 3. A large fraction of the experimental setup: Optics bench, cryostat,
and a part of the electronics.

Fig. 4. Left: Example of the integrated SDR noise floor without and with
the QCL line in the IF monitor output. Right: A Gaussian function is fitted to
the line segment of the same data, with the joint parts used for the fit colored
in green.

needed robustness for use in an actual receiver. Interestingly,
stabilization was still possible at small SNRs, such as only 2
dB over the noise floor. This means a significant fraction of
the QCL power can be used to pump an array of mixers.

VI. CONCLUSION

In conclusion, we have shown a robust frequency locking
of a 4.7 THz QCL using a room-temperature superlattice
device. The achieved locked linewidth of 780 kHz is enough
for heterodyne astronomical spectrometers to reach a velocity
resolution of 50 m/s, which is more than needed. In addition to
this work, with a similar setup in the future, we hope to down-
convert the SLD emission with an HEB mixer and demonstrate
robust phase locking.
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