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Abstract—A novel method based on microwave holography
has been developed to align the optics of the Fred Young
Sub-millimeter Telescope (FYST). The telescope uses a crossed-
Dragone configuration with a 6 meters primary dish and a similar
size sub-reflector. To reach high efficiency in the sub-millimeter
band, it requires a surface precision better than 10.7 µm. The
proposed method requires measuring four or more beam maps by
putting the receiver at different points in the focal plane to break
the phase degeneracy between the reflectors. Therefore, we refer
to this method as ‘Multi-map’ holography. The system is designed
to operate at around 300GHz to achieve a measurement accuracy
better than 2 µm. In this report, a small model of the FYST
has been constructed to demonstrate the feasibility of this new
holography metrology in the laboratory. Conventional one-beam
holography and the new ‘Multi-map’ measuring were carried
out to measure the artificial surface errors on the reflectors of
the small telescope. The results prove that the errors on the two
reflectors can be discriminated and measured with a statistic
error lower than 1 µm. The measurement also indicates that the
large spatial errors existing on the two reflectors also can be
observed.

Index Terms—microwave, holography, alignment, sub-
millimeter telescope, crossed-Dragone, CCAT-prime.

I. INTRODUCTION

MEASURING and correcting the surface deformation
of large radio telescopes are critical to preserving the

electromagnetic performance of the telescope at the high-
est operating frequency. One conventional surface diagnosis
method is microwave holography [1] [2], which directly
measures the telescope’s beam in both amplitude and phase
and converts the beam to the complex fields on the reflector
surface. Then the offset of the reflector from its original
position can be computed by using the phase term of the
solved surface fields. This technique is regularly used at almost
all sub-millimeter telescopes around the world, and offers an
efficient and accurate way for adjusting the reflectors. But
It is always used in conventional telescopes where only one
large reflector needs to be adjusted. For systems having two
reflectors, e.g., the crossed-Dragone optics [3] [4] used in
the FYST [5] [6], employing this method only indicates that
reflector deformations exist, but cannot identify which of the
two mirrors is deformed, i.e., it cannot resolve the surface
error degeneracy in the two-mirror system. A new method,
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which measures several beams with the receiver placed in
different well-separated points in the focal plane, was proposed
for the FYST telescope in paper [7]. In this report, a 1/15th-
scale model of the FYST was constructed as a testbed to
demonstrate the feasibility of the new proposed method.

II. LABORATORY HOLOGRAPHY DESIGN

The FYST reflectors are built using 146 rectangular panels,
77 on the primary mirror and 69 on the secondary, with panel
sizes of 670 × 750 mm and 700 × 710 mm respectively. We
would use a spatial resolution of 10×10 cm2 to properly solve
the panel deformations on the measured surface error maps.
Translating this requirement to the laboratory model indicates
that a spatial resolution of 10× 10 mm2 is reasonable for the
400mm diameter laboratory antenna. This means a 5.7 × 5.7
deg2 beam map extension needs to be measured at 300GHz.
The technical details of the holographic design of the scale
model and the full FYST system are compared and summa-
rized in Table I. The laboratory setup is illustrated in Fig. 1.
The Antenna and transmitter are separated by ∼5 meters, and
the beams are measured by scanning the transmitter that is
moved by an XY-scanner. The reference receiver is mounted
beside the antenna, 275mm from the primary reflector (M1)
center. The pathlength from the transmitter to the reference
receiver is not fixed. The phase modifications on the observed
beam by the pathlength changes have to be corrected by
geometrical optics.

Fig. 1. Laboratory holographic testbed. Left: the 1/15th-scale FYST tele-
scope, 400mm in diameter, and the location of the signal and reference
receiver; right: the transmitter mounted on an XY-scanner is located at ∼5
meters away from the antenna to illuminate the telescope. The scanner can
move in the range of ±550mm along x and y directions.
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TABLE I
CRITICAL HOLOGRAPHIC DESIGN

Lab FYST
Operating Wavelength (λ): 1.0137mm 1.0137mm
Telescope Aperture: 400mm 6000mm
Distance from source to antenna: 5m 300m
New focus (behind nominal focus): 200mm 705mm
Accuracy: < 2 µm < 2 µm
Spatial Resolution: 10mm 100mm
Required angular range: 5.7◦ 0.57◦

Source scan range: ±250mm ±1500mm
S/N: >64dB >67dB
Number of field points 51× 51 (71× 71)
Receiver position spacing: 100mm 800mm

The two receivers and transmitter adopt the same diagonal
horn [8] whose half-power beamwidth is about 16 degrees. The
extra optics designed for reference receiver and transmitter
modules in the original FYST holography [7] is removed
because of the laboratory setup’s shorter distance and broader
beam map size requirement.

The beam maps of the Lab antenna are measured by placing
the signal receiver to 5 points in the focal plane, at the center
and the four corners of a square with side length of 100mm,
see Fig. 2. Since the source is around 5 meters away from
the telescope, to refocus the optics the receiver is moved back
200mm from the astronomical focus.

Fig. 2. Optical layout of the laboratory antenna (left). 5 receiver positions in
the receiver plane (right).

III. BEAM MEASUREMENT AND ANALYSIS

The beams are measured by scanning the transmitter column
by column with a constant speed. The field points are recorded
using a digital cross-correlation spectrometer with ∼100Hz
sampling rate (∼10ms integration time). The recorded data
and position of field points are synchronized by time stamp.
To calibrate the effect of systematic drift, the transmitter is
moved to the beam center every 20s. After the beam scan, the
impact of the phase and amplitude structure of the reference
receiver beam needs to be removed from the recorded data.

To check the feasibility and accuracy of the holographic
system, a copper foil with a thickness of 50 µm is used to
create artificial piston errors on the mirror surfaces, and plastic
tapes are applied to produce equivalent piston error in the

opposite direction. Fig. 3 shows the artificial error patches on
the mirrors. Then the one-beam holography and multi-map
analysis are both measured to diagnose the antenna optics.

Fig. 3. Artificial piston errors on M1 and M2 made by copper foils and
plastic tapes.

Fig. 4. Conventional one-beam holographic analysis. Left: the measured
focused central beam; Right: equivalent surface deformations at the surface
of M1.

A. Conventional One-beam Holography

The conventional holography just measures the focused
beam with the receiver mounted in the center of the focal
plane, see Fig. 4 (left). Since the beam is measured in the
source plane that is parallel to the aperture plane of the
antenna, we can convert the beam map labelled by fA(x, y) to
the aperture fields expressed by fB(x, y) using technique of
physical optics propagation [10]. data analysis processes are
summarized below:

1) Calculate angular spectrum FA(u, v) of the observed
fields using fast Fourier transform, where u and v are
expressed by sin θ · cosϕ and sin θ · sinϕ respectively.
θ and ϕ represent the elevation and azimuth angles.

2) Compute the angular spectrum of the field in aperture
FB(u, v) using physical optics propagation technique
expressed by the formula of FB = FA · exp(j 2π

λ ∆z ·√
1− u2 − v2), where ∆z is the distance between field

planes.
3) Make inverse Fourier transform on the new angular

spectrum FB(u, v) to get the aperture fields fB(x, y).
4) Based on the phase distribution of the solved aperture

fields, the antenna geometry, and operating wavelength,
the equivalent surface errors on M1, which is the sum
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of errors on M1 and M2, can be computed, see Fig. 4
(right).

The main beam is obviously distorted. The inferred surface
deformation in Fig. 4 right indicates all error patches, also
points out the large spatial twist error in the antenna optics.
But only using this error map cannot discriminate where the
errors come from. These will be analyzed by following the
‘Multi-map’ holography.

B. Multi-map Holographic Analysis

The ’Multi-map’ approach uses all five complex beam maps
measured with the receiver at the five positions shown in
Fig. 2. Fig. 5 displays the observed on-axis and four off-
axis beam maps. The off-axis beams shift the projection of
mirror errors in the aperture plane, allowing to separate the
error contribution by their respective parallax. We can convert
the five complex beams to two mirror surface maps using
the numerical fitting algorithm described in paper [7], which
expresses the surface errors by a set of parameters and find
their values that can make the simulated beam best fit to
the observed beam maps. We first research the error source
of the twist-like errors in Fig. 4. The mirror surfaces of the
small antenna are represented by Zernike polynomials [9] with
maximum order of 7th (36 orthogonal polynomials). The fitting
results shown in Fig. 6 top indicate that the twist-like errors
come from M1.

Fig. 5. The observed 5 distorted focused beams with the receiver located
at positions [50mm,50mm], [50mm,-50mm], [0,0], [-50mm,50mm], and [-
50mm,-50mm] relative to the center of the focal plane.

To find out the small artificial errors, more polynomials
are required to achieve high spatial resolution, for example,
employing a set of polynomials with maximum order of 30th

(496 parameters on each mirror needed to be fitting), more
details of the surface quality are resolved, see Fig. 6 bottom.
All four artificial piston errors (3 patches on M1 and 1 copper
foil on M2) are clearly detected in their correct location. The
two plastic tape patches introduce a fraction of phase delay
that is equivalent to negative piston panel errors. Their precise
phase delay is not well known because of the multi-reflection
between the two surfaces and the difficulty of attaching them
tightly to the mirror surface.

The statistical error of the measurement can be studied by
repeating the measurements, which shows a random variations
of the surface with a RMS scatter of < 1 µm.

The resolved surface errors in Fig. 6 show a twist-like error
on M1. To verify this, the deformation of M1 was checked
mechanically, and was found to be caused by misalignment
of the mounting frame. Correcting this misalignment fixed the
beam distortion. Fig. 7 shows the comparison of the beam
affected by the twist error on M1 and the beam after error

Fig. 6. The deduced surface errors analyzed by the ’Multi-map’ holography
algorithm. Top is the fitted surface errors only in large spatial scale using 36
Zernike polynomials with maximum order of 7th for each mirror surface. Bot-
tom is the more detailed surfaces that are resolved by fitting 496 parameters
per mirror (992 in total).

Fig. 7. Observed focused beam of the laboratory antenna. Left is the measured
beam distorted by the twist error on M1; Right is the one after the large error
was corrected. Blue curves are the contour map of the observed beam.

correction. This shows that the novel ’multi-map’ holography
technique can also correctly identify and discriminate the
large-scale errors of the mirror surfaces.

IV. CONCLUSION

A near-field beam measurement system has been built to
measure the surface profile of the two reflectors of the small
version FYST antenna. The feasibility of the new ’Mutli-map’
holographic technique is proven. Employing this technique,
the small-scale surface deviations on the two reflectors can be
measured and discriminated with a repeatable error less than <
1µm. The deformations in large spatial scale of the reflectors,
such as errors caused by gravity and thermal expansions, can
also be diagnosed. The experiments cannot check the accuracy
of the measured large spatial errors because the laboratory
antenna cannot be adjusted with predictable behavior. But we
believe that repeating a couple of times of the holographic
measurements and panel adjustments for the full-size FYST
telescope can correct the large spatial errors.
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