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Abstract— We present a method for a 1-port vacuum 

cryogenic in-situ calibration of a Vector Network Analyzer 

(VNA) using Commercial Off The Shelf (COTS) RF latching 

electro-mechanical switches. This procedure is being developed 

for use in a closed-cycle cryogenic test bench to measure the 

reflection coefficient of a single port connectorized Device 

Under Test (DUT) which is loaded onto a cold plate alongside 

calibration standards. The RF switch allows for the calibration 

and device measurement to be carried out in a single thermal 

cycle as opposed to a minimum of 4 cycles, which is required 

for industry standard Open-Short-Load (OSL) device 

calibration. This test procedure has been carried out on an 

arbitrary DUT at ~ 3K temperature, over a 6 GHz bandwidth.  

However, the goal is to develop a setup and procedure for 

measuring the frequency and temperature dependent complex 

impedance of superconducting devices such as Hot Electron 

Bolometer (HEB) mixers, which are used for down converting 

the signal in the IF chain of astronomy instruments.  

Characterization of superconducting devices while they are at 

their operating temperature is challenging using traditional 

calibration methods. This COTS alternative is less expensive 

and more efficient in terms of thermal cycles and set up.               

Keywords— Astronomy Instrumentation, Cryogenics, Device 

Characterization  

I. INTRODUCTION  

THz astronomy often makes use of superconducting non-

linear devices as mixing elements in receivers to down-

convert incident sky signal to an intermediate frequency (IF) 

by convolving it with a local oscillator (LO) signal. 

Examples of common astronomy instrumentation mixers 

include superconductor-insulator-superconductor (SIS) 

mixers (Zmuidzinas et al. 2004), and hot electron bolometers 

(HEBs) (Gousev et al. 1994). Because these devices are 

superconducting they must be operated at cryogenic 

temperatures, achievable only inside vacuum cryostats. 

Their complex impedance is dependent on frequency, LO 

power, and temperature. The impedance is an important 

factor to characterize because if there is impedance 

mismatch between mixer output and the amplifiers in the IF 

system, standing waves will be present, complicating data 

collection. Vector network analyzers (VNAs) are typically 

used to characterize devices by measuring their scattering, or 

s-parameters. The accuracy of the s-parameter measurements 

are dependent on VNA calibration. Calibration requires a 

series of measurements using already well characterized 

objects known as calibration standards. A one-port 

calibration can be carried out using a short circuit, open, and 

matched 50 ohm load as reference standards, this is known 

as an OSL calibration. VNA calibration is difficult when the 

device under test (DUT) is physically isolated inside a 

vacuum system. Calibration inside the cryostat may be done 

manually by measuring the individual standards separately 

at the operating cryogenic temperature, but this would 
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require a minimum of four cool-down, warm-up cycles to 

obtain one measurement (Rodriguez-Morales, et al. 2010).  

In this work we present a method to calibrate a VNA and 

measure the DUT all in the same cycle. This setup makes use 

of commercial-off-the-shelf calibration standards, and 

cryogenic latching switches. A one port in-situ calibration 

was used to characterize an RLC circuit in a single cycle, and 

that result was compared to a manual method with four 

cryogenic cycles.  

II. SET-UP 

The cryogenic test bench is shown in Fig. 1. The closed cycle 

system can reach ~ 4 K temperatures, which was below the 

operating point for most superconducting materials. The 

VNA was a Rhode & Schwarz ZVA 24. The calibration 

standards were COTS 85033D DC - 6 GHz, 3.5 mm SMA 

calibration kit. Each of the calibration standards were heat-

sunk to the 4 K test stage using copper clamps so that each 

component was measured at the same temperature. A 

temperature sensor was fastened to the DUT heat bracket at 

the highest point. This calibration scheme was made possible 

by a single pole six-through (SP6T) cryogenic 

electromechanical latching DC – 18 GHz Radiall 

R583423251 switch. Port one of the VNA was connected to 

the switch through the cryostat. Four channels on the switch 

were connected to the calibration standards, and DUT via 

short Mini-Circuits hand formable coaxial UT-047 cables. A 

supplied 28V DC bias actuated the different switch channels. 

Outside of the cryogenic system was a hermetic DC bias box 

that could be manually operated to change the switch 

channels.  

 
 

 
Fig. 1. Cryogenic test bed setup. The calibration standards and DUT 

were heat-sunk to the test bed using copper clamps and brackets, and are 
numbered 1-4. The Radiall SP6T switch is in the center with DC power 

supplied through cryo-wire. 
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At room temperature the SP6T DC bias of 28 V resulted in 

an actuating current of 61 mA. At ~ 10 K temperature, the 

switch was actuating with a 2 V bias. By attaching the 

reference standards, DUT, and VNA to the same switch, one 

could measure each component in a single cycle. A one port 

RLC made with COTS surface mount components was the 

DUT for both a single cycle in-situ measurement and a four 

cycle manual calibration. For all testing the VNA port power 

was -20 dBm, the IF bandwidth was 10 Hz, the averaging 

was x16.  

III. RESULTS 

The RLC was measured at room temperature using an 

automated electronic calibration kit, and then using the 

manual OSL kit. First, this manual calibration was done 

without the switch. The individual standards were 

connected one at a time to the first port of the VNA via 

coax cable. Then the VNA was calibrated with the same 

standards using the switch. Channel one of the switch was 

the open, channel two was the short, channel three was the 

matched load, and channel four was the DUT. These three 

measurements were in agreement which validated an OSL 

measurement using the SP6T at 300 K. The S11 of the DUT 

at 300 K can be seen in Fig. 2 as the blue trace. The 

cryostat was brought to ~ 4 K temperature. The room 

temperature calibration had drifted due to a change in 

temperature and conditions inside the cryostat. The switch 

test was repeated when the system was at 3.3 K. The new 

result can be seen as the pink trace in Fig. 2. The RLC 

resonance was recovered by recalibrating at cryogenic 

temperatures using the SP6T. The result was shifted slightly 

in frequency. The shift was likely due to objects contracting 

at cooler temperatures and changing the values of not only 

the RLC test device, but of some of the calibration 

standards. The linear coefficient of thermal expansion 

(CTE) determines how objects will change with 

temperature for the different materials. The ~ 1.75% shift in 

frequency indicates a change of ~ 3.50% in the inductance 

and capacitance LC. The cryogenic calibration was 

repeated using a manual method where each standard was 

measured separately at cryo and replaced over multiple cool 

downs was used to verify that this shift is not coming from 

the switch. Each cycle changed the measurement 

environment by changing the thermal load on the test bed, 

and because the internal coax lines were disturbed by the 

act of replacing standards and the DUT. The manual 

method took 2 days, and the results can be seen in Fig. 2 as 

the brown trace. The two traces are nearly identical with 

some variation due to the change in environment in the 

manual method and the lack of temperature control. 

Without stable temperature control of the test stage the 

DUT, measurements had a narrow window to be recorded. 

The final temperature with the bulky SP6T and calibration 

standards installed together, was 3.3 K. The individual 

standards and DUT installed alone would reach ~ 2.7 K. 

This meant averaging had to be started before the objects 

reached 3.3 K to measure the same conditions.    

 

 

 
Fig. 2. An RLC DUT test circuit measured at room temperature 300 K 

(blue), and at 3.3 K using an RF SP6T (pink). The result is compared to a 

manual method (brown).  

IV. CONCLUSION 

The in-situ one-port VNA calibration using an SP6T to 

switch between reference standards and DUT provides an 

alternate calibration scheme to a multi-cycle manual error 

correction. The SP6T method is in good agreement with the 

manual as shown in Fig. 2. The S11 response is nearly 

identical between both methods. The variations result from 

the drawbacks of the manual method, namely the 

inconsistency of environment between measurements, i.e. 

cable position and exact temperature. The SP6T offers 

several improvements over the alternatives. The setup is 

entirely COTS and relatively inexpensive. The technique 

only requires a single cryogenic cycle to calibrate and test 

which can save days of measurement time. Due to that fact, 

the calibration can be restarted in the same cycle if 

temperature fluctuates before or during measurement with 

very little time lost. Having characterized a generic RLC 

DUT, the follow up measurement will be that of an HEB 

built for THz astronomy instrumentation. With more 

accurate characterization a matching network may be 

implemented to improve power transfer from the HEB to 

the rest of the IF system.   
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