Analysis of the low temperature behavior of GaN-on-SiC Schottky barrier diodes

B. Orfao^{*1}, G. Di Gioia², B. G. Vasallo¹, S. Pérez¹, M. Zaknoune², Y. Cordier³, Y. Roelens², J. Mateos¹ and T. González¹

Abstract—GaN-on-SiC Schottky Barrier Diodes have been characterized from 33 to 475 K. A theoretical model accounting for image force lowering is used to extract the parameters of the diodes and predict the reverse-bias current. Deviations from the ideal behavior are observed for low temperatures both in forward and reverse bias.

Keywords—GaN Schottky barrier diodes, low temperature characterization.

I. INTRODUCTION

In the last years, GaN has attracted great interest for the fabrication of Schottky Barrier Diodes (SBDs) for high-frequency high-power applications [1], such as frequency multipliers in the sub-THz range overcoming the power output performance of the standard GaAs technology [2]. The potential use of GaN SBDs in systems for space applications motivates the study of the diodes at cryogenic temperatures reported in this work.

II. RESULTS

C-V and I-V measurements were carried out from 33 to 475 K on a (221 µm diameter) GaN-on-SiC SBD fabricated at IEMN. C-V measurements provide an epilayer doping level of 1.05×10^{17} cm⁻³, used for the fitting of the *I-V-T* curves shown in Fig. 1(a), from which the barrier height and the ideality factor were extracted (inset). A thermionic-emission (TE) model including image force lowering and series resistance (around 10 Ω for all T) was used. In Fig. 1(a), the expected decrease of the TE current when lowering T is observed, jointly with a non-ideal current mechanism preventing a good fitting of the I-V curves at the lowest temperatures, confirmed by the decrease of the barrier height and increase of the ideality factor (inset). Indeed, a kink in the I-V curves appears at low T, which could be attributed to the presence of defects or inhomogeneities in the barrier.

NOTES:

Fig. 1. Comparison of the (a) forward- and (b) reverse-bias I-V-T characteristics obtained experimentally (solid lines) and with the model (dashed lines). Insets: barrier height and idelity factor vs. T.

For reverse bias, Fig. 1(b), our model, which includes also the tunneling current (using the same barrier height as in forward-bias), correctly fits the measurements for the highest temperatures. However, below 400 K other tunneling current mechanisms become significant.

REFERENCES

- F. Roccaforte, et al., "Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices", Wiley, August. 2020.
- [2] S. Liang, et al., "A 177-183 GHz High-Power GaN-Based Frequency Doubler With Over 200mW Output Power", *IEEE Electron Device Letters*, 2020.

¹University of Salamanca, Salamanca, 37008, Spain; ²IEMN, Villeneuve d'Ascq, 59650, France; ³CRHEA, Valbonne, 06560, France