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Abstract—In this work we perform comprehensive study of 

electrodynamic properties of superconducting films of NbTiN 

at frequencies up to 2.5 THz and in temperature range from  

4 up to 15 K using commercial time-domain spectrometer 

TeraView TPS Spectra 3000. A set of NbTiN films with 

different content controlled by the pressure of nitrogen in 

magnetron chamber was fabricated. We found out that there 

is a trade-off between low normal-state resistivity, small 

London penetration depth and high critical temperature. By 

characterizing the films, the optimal manufacturing conditions 

were determined. Two models, with and without taking 

intragap states into account were used to describe 

experimental data and both show quantitative correspondence 

with the experiment. 

Keywords—thin films, superconducting materials, terahertz 

measurements 

I. INTRODUCTION 

Devices of superconducting electronics have been 

extensively used in fundamental research and number of 

practical applications. The devices based on 

superconductor-insulator-superconductor (SIS) tunnel 

junctions are the main element of receiving systems in 

terahertz (THz) range having the lowest noise temperature 

only few times higher than quantum limit. The operating 

frequency of the superconducting SIS-receivers is limited 

by the gap, being 750 GHz for Nb which is used in 

fabrication of the majority of superconducting devices 

nowadays. In order to expand the operating range to 

frequencies higher than 1 THz, other materials, e.g. Nb 

compounds, like NbN and NbTiN, with higher gap 

frequency should be used. 

This work is dedicated to characterization of the 

parameters (normal state resistivity ρ0, critical temperature 

Tc, London penetration depth λL) of superconducting NbTiN 

films fabricated at different technological conditions at 

frequencies close to 1 THz. The thicknesses of the films are 

around 330 nm, exceeding London penetration depth, 

which turned out to be more than 280 nm for all the 

samples. 

II. FABRICATION PROCESSES 

NbTiN films were sputtered on 535-μm-thick high-

resistivity silicon substrates at room temperature using 

cluster magnetron system Kurt J. Lesker. The sputtering 

was performed from 3” NbTi (78 % of Nb and 22 % of Ti) 

target in mixture of nitrogen and argon. Power of 
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magnetron was around 500 W. The pressure of nitrogen in 

magnetron chamber was varied from 0.35∙10
-3

 to 0.65∙10
-3

 

mbar in order to investigate its impact on critical 

temperature of the film Tc and ρ0 which is DC conductivity 

at normal state near Tc, and also determine the conditions at 

which the highest Tc and lowest ρ0 are obtained. The DC-

parameters measured by four-probe technique of all the 

samples are listed in Table I. 

III. TDS-MEASUREMENTS 

The study of the samples at THz frequencies was 

performed using TDS-spectrometer TeraView TPS Spectra 

3000. Transmission spectra of the superconducting films on 

substrates were measured for all the films in temperature 

range from 4 to 15 K. Conducting medium can be 

expressed in terms of complex permittivity       
       , where ε’ is the real part of permittivity and σ1 is 

the real part of conductivity. Measured spectra together 

with the fitting curves are shown in Fig. 1. 

 
Fig. 1. Spectra of transmission coefficient (a), real part of permittivity (b) 

and conductivity (c) of superconducting NbTiN film (sample #5). 
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IV. THEORETICAL MODELS 

We used the expressions from the paper by Zimmermann 

et al. [1] in order to fit our data. This model not only allows 

to calculate the complex conductivity of the 

superconductor, but also takes into account finite 

quasiparticle scattering time. The additional parameter, 

quasiparticle scattering rate γ, is reciprocal to scattering 

time τ: γ = ℏ/τ. From fitting the experimental data, we 

obtain ρ0, Δ and γ. Since the permittivity in superconducting 

state is many times higher than in normal state due to 

Cooper pairs, Tc is determined directly from Fig. 1 b as the 

lowest temperature where ε’ takes finite value at zero 

frequency. 

As is known, Nb compounds including NbTiN are 

superconductors with strong coupling. Related effects lead 

to that the ratio between the critical temperature and the gap 

at T = 0 Δ0 = 1.76kBTc predicted by BCS-theory is no longer 

valid. The coefficient at kBTc determined from our 

measurements turned out to take values from 2 up to 2.2 for 

all the samples. 

In recent papers on studying the properties of NbTiN 

films it was claimed that the density of states is also 

different from that predicted by BCS for whatever reasons 

[2]. Singularities in the density of states at the energies near 

the gap vanish and the gap frequency itself is slightly 

reduced. These effects can be treated by more complicated 

models, e.g. described in [3]. 

As can be seen from Fig. 1, theoretical curves calculated 

using the expressions from [1], where the BCS-like density 

of states is considered, are in good correspondence with the 

results of experiment in our work. Therefore, in order to 

understand the difference between the models we used both 

of them to process the data from [2], where the spectra of 

relative change in reflection coefficient upon transition 

from superconducting to normal state were measured. 

Multiple reflections were suppressed by adding additional 

silicon plates to substrate. Both models allow to obtain 

reasonable agreement with the experimental data (see 

Fig. 2). However, a small discrepancy between the curve 

corresponding to model [1] appears at frequencies near the 

gap which is around 1.1 THz. This discrepancy can be 

eliminated using model [3] by adjusting parameter Γs that 

corresponds to scattering rate on magnetic impurities, 

though the accuracy of the fit at frequencies higher than 

1.3 THz becomes worse. 

It still remains unclear if the discrepancy near the gap 

frequency is caused by intrinsic or extrinsic effects (such as 

surface roughness or contamination). 

V. CONCLUSIONS 

The resultant parameters of all the films are listed in 

Table I. It should be noted, that there is a trade-off between 

the lowest ρ0, smallest London penetration depth at zero 

temperature λ0 and highest gap and Tc. It was found out that 

ρ0 monotonously grows with increasing the pressure of 

nitrogen in chamber; λ0 has minimum near 4.5 mbar and Tc 

reaches its maximum at 5.5 mbar. Thus for particular 

purposes one should use the corresponding conditions. 

Moreover, the values of the parameters, obtained from 

DC-measurements and using TDS differ by approximately 

10 %, what is likely to be caused by the grain structure of 

the films. At temperatures close to Tc, there are areas in 

film both in superconducting and normal state. Direct 

current flows through superconducting pattern, which is not 

the case for  

 

 
Fig. 2. Relative difference of reflection coefficients of NbTiN film in 

superconducting and normal states. Experimantal points were taken from 

[2]; solid and dashed curves represent the fits using expressions 
considering BCS-like and modified densities of states, respectively. 

the current induced by the AC-radiation that flows through 

both the grains and the boundaries. Therefore, Tc of the 

films at high frequencies is determined by the transition 

temperature of the boundaries, which is lower. Therefore, 

the parameters obtained by TDS are those that should be 

used in design and modeling of superconducting devices. 

TABLE I.  PARAMETERS OF THE FILMS 
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Sample no. #1 #2 #3 #4 #5 #6 

N2 pressure, 

10-2 mbar 

6.5 5.9 5.3 4.7 4.1 3.5 

Thickness, 

nm 

333 332 328 339 338 325 

ρ0, DC, 

μΩ cm 

127 114 104 98 93 92 

Tc, DC, 

K 

14.9 15.2 15.2 15.3 15.2 14.8 

ρ0, TDS, 

mΩ cm 

110 105 95 91 89 85 

Tc, TDS, 

K 

14.1 14.4 14.6 14.4 13.9 13.8 

2Δ0, 

meV 

4.9 5.1 5.1 5.1 5.2 4.7 

λ0, 

nm 

330 300 290 280 280 290 
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