
32nd IEEE International Symposium on Space THz Technology (ISSTT 2022) Baeza, Spain, October 16-20, 2022

Breaking the 10 mW/pixel Limit for Kinetic
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Abstract—We demonstrate a prototype kinetic inductance de-
tector (KID) readout system that uses less than 10 mW per pixel.
The CCAT-prime RFSoC based readout is capable of reading
four independent detector networks of up to 1000 KIDs each.
The power dissipation was measured to be less than 40 W while
running multi-tone combs on all four channels simultaneously.
The system was also used for the first time to perform sweeps
and resonator identification on a prototype 280 GHz array.

Index Terms—kinetic inductance detectors, RFSoC, CCAT-
prime, Prime-Cam, FPGA readout

I. INTRODUCTION

Millimeter and submillimeter direct detector multiplexing
methods experienced rapid growth and experimentation in the
early 2000’s [1]. Some of these early efforts have directly led
to a substantial increase in detector counts for existing tele-
scopes and some promise to enable even more for upcoming
telescopes [2]–[4].

The Kinetic Inductance Detector (KID) was developed
during this period and employs a natural frequency division
multiplexing [5]. Each KID is a superconducting thin film
shunted resonator in which the absorption of photons above the
band gap energy changes the inductance and thus the resonant
frequency. These changes in frequency can be monitored
as changes in transmission at the KIDs original resonant
frequency. By designing an initial frequency spacing for each
KID and coupling each to the same microwave feed line,
frequency multiplexing factors above 1000 can be achieved
with a single pair of coaxial cables. In addition to the high
multiplexing factor the fabrication and cryogenic complexity
is significantly reduced compared to other methods at the
cost of higher complexity for the room temperature readout
electronics.

KIDs were chosen as the ideal detector technology to
efficiently fill in the wide field-of-view and large optical
throughput of the upcoming Prime-Cam instrument on the
6 meter Fred Young Submillimeter Telescope (FYST) [6],
previously known as CCAT-prime. Prime-Cam will observe
the sky with over 100,000 mm/sub-mm direct detectors at 5600
meters in the Atacama desert of northern Chile. The nearly
factor of ten increase in detector count from existing telescopes
that Prime-Cam requires has spurred the development of a
novel frequency multiplexing readout system.
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We present the first power dissipation measurements of the
system and discuss the advantage of low resonant frequency
KIDs. We also compare it to a previous generation readout and
comment on the implications for planned and future balloon-
borne mm/submm telescopes.

II. RFSOC READOUT AND THE LOW FREQUENCY
ADVANTAGE

The Radio Frequency System on Chip (RFSoC) developed
by Xilinx has high speed digitizers, reconfigurable logic, and
ARM microprocessors integrated all into a single chip. The
integrated architecture has lowered the total power dissipation
substantially when compared to equivalent implementations
separated into multiple chips. All metrics of size, weight,
power, cost, and bandwidth make it an ideal platform for the
readout of frequency multiplexed detectors. An RFSoC based
readout has been recently developed for Prime-Cam [7].

All Prime-Cam KID arrays are being developed to resonate
below the Nyquist frequency of the RFSoC digitizers allowing
for direct RF sampling and generation. The digital design uses
interpolation and decimation filters to limit the instantaneous
bandwidth to 512 MHz and will use the numerically controlled
local oscillator (NCLO) and digital mixers to up and down
convert this band anywhere below Nyquist (2.048 GHz). This
eliminates the earlier generation electronics requirement for
analog mixers simplifying the warm readout considerably. The
image tone suppression on the digital mixers were measured
to be greater than 50 dB, a nearly impossible spec to meet
with analog mixers.

An additional benefit when choosing lower frequency res-
onators (< 2 GHz) is that the number that can be multiplexed
by the readout electronics increases with decreasing resonant
frequency. This is due to the fact that the resonator bandwidth
decreases with frequency ∆f = f/Qr. If the combined
detector and readout electronics are viewed as an information
carrying system then the low frequency advantage brings it
closer to the Shannon channel capacity, although there is still
a long way to go (see [8]).

Power dissipation within the RFSoC can be described by
a static and dynamic term which scales with operational fre-
quency. Increasing the instantaneous bandwidth of the readout
requires either operating at a higher frequency within the
fabric or with an increased resource utilization. Both lead to
increased power dissipation and thus provide another line of
support for the low frequency advantage.
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Fig. 1: Power dissipation measurement of four channel design.
The RFSoC ZCU111 on the left was powered by the supply
in the top right with 12 V and was drawing 3.028 A (36.34
W). The RFSoC was programmed with the four channel
firmware and configured to generate frequency combs from
each channel. Each frequency comb was digitally mixed with
a different numerically controlled local oscillator frequency to
separate the combs for visual display on the spectrum analyzer.

Some of the benefits described above were also found
nearly a decade ago with detector performance advantages best
described in Swenson et al. 2012 [9].

III. POWER DISSIPATION MEASUREMENTS

Two power measurements were performed to verify the
dissipation, one with a handheld multi-meter and the other
with a benchtop power supply.

First the ZCU111 development board power adapter output
was measured with a multi-meter to be 12.23 V. The current
was measured with a multi-meter in series between the output
of the power adapter and the ZCU111 power Molex connector
J52. Upon boot the system drew 1.83 A. In the boot state
the ARM core loads a lightweight linux operating system and
allows communication via Ethernet. The next step was to load
the firmware configuration bitstream using the open source
PYNQ library. After the bitstream was loaded the current rose
to 2.7 A and stabilized. A frequency comb containing 1000
tones spanning 512 MHz of bandwidth were written to all
four independent channels. The frequency comb waveform
is normalized to maximize the available dynamic range of
the D/A. With continuous operation of all four channels the
current rose to 3.09 A and stabilized. The total power draw
for the multi-meter measurement was 37.8 W.

The second power measurement was performed at the
Herzberg Astronomy and Astrophysics Research Centre mm-
wave lab with a DC power supply. The system was powered
by applying 12 V directly to the Molex connector J52. After
the bitstream was loaded and each channel was configured to
generate multi-tone combs the current rose to 3.028 A and
stabilized. This corresponds to a total power dissipation of
36.34 W. To show all four combs on a spectrum analyzer
simultaneously a 4-way power combiner (Mini-Circuits ZFSC-
4-1-S+) was found in the lab and connected to all four active
D/A’s of the ZCU111 development board. Each numerically
controlled local oscillator within the RFSoC were set to

Fig. 2: Plots of the forward transmission as a function of
frequency for a 280 GHz prototype array measured by the
RFSoC. The plot on the left shows the transmission normalized
to the max for the operational bandwidth of 512 MHz and a
numerically controlled local oscillator center frequency of 676
MHz. All five resonances corresponding to the five prototype
detectors are easily identified. A zoom in of one resonance is
shown on the right.

different center frequencies to spread the combs for visual
effect. This measurement is summed up in one photograph
show in figure 1.

IV. COMPARISON WITH PREVIOUS GENERATION
READOUT

The author was involved in the development of an earlier
generation KID readout [10] which has been deployed in
two imaging polarimeter instruments at the Large Millimeter
Telescope [11], [12], and soon an on-chip spectrometer [13].
It has also flown on two balloon-borne telescopes [14], [15].
The digital signal processing algorithm used for these projects
was the starting point for the RFSoC based readout system.

The earlier generation readout mentioned above was im-
plemented on the reconfigurable open architecture computing
hardware version 2 (ROACH2) designed by the collabora-
tion for astronomy and signal processing electronics research
(CASPER) [16]. The gateware design implemented on the
ROACH2 platform was capable of reading 1000 channels and
drew 50 W (Not including intermediate frequency (IF) elec-
tronics such as the two analog mixers and external amplifiers),
This corresponds to 50 W/1000 pixels = 50 mW/pixel. The
new four channel RFSoC design can read out 4000 pixels for
less than 40 W meaning < 10 mW/pixel. BLAST-TNG flew
five ROACH2s for a total of ∼ 250 W (not including IF) with
a maximum possible number of detectors of 5000. This could
be replaced with two RFSoCs running the four channel design
for a significantly relaxed power dissipation, size, and weight.
Utilizing all 250 W would correspond to six RFSoCs to read
out a total of 24000 detectors. Future balloon-borne telescopes
will benefit greatly from the RFSoC platform and a few are
already planning to fly them [17], [18].

V. FIRST MEASUREMENT WITH DETECTOR ARRAY

Preliminary measurements were made with the RFSoC on
a witness chip for the Aluminum 280 GHz array fabricated at
NIST by the quantum sensors group. The array was cooled in
a dilution fridge to 100 mK at Cornell University. The system
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contained 23 dB of cold attenuation to the devices and was
followed by a low noise amplifier with 30 dB of gain and
input referred noise temperature of 5 K. The RFSoC system
was connected via an SMA breakout board to the cryostat with
coaxial cables and a room temperature 10 dB fixed attenuator
on the drive side. A 1000 tone comb was produced initially
and measured on the spectrum analyzer to have approximately
–50 dBm per tone. A preliminary version of the readout
control software [19] was used to command the channel to
generate the comb, perform a frequency sweep, and output
a file containing the sweep measurement. The sweep used
all 1000 tones and stepped the NCLO such that bandwidth
between each tone was covered with a 1 KHz resolution. The
result of the sweep is shown in figure 2 where each of the
five detector resonances are identified and a zoom in of one
resonator is also shown.

VI. CONCLUSION

We have demonstrated a kinetic inductance detector read-
out that can achieve less than 10 mW/pixel. This system
developed for the Prime-Cam instrument on the Fred Young
Submillimeter telescope is ideal for KID-based balloon-borne
telescopes. The systems on-board digital mixer and numer-
ically controlled oscillator make transmission and resonator
identification measurements with ease and considerably lower
systematics. Future improvements in the readout gateware are
anticipated and we expect the power per pixel to decrease even
further on the same hardware.
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