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 

Abstract— We report on the development of a 10.7 THz Hot 

Electron Bolometer (HEB) mixer. The NbN HEB is fabricated 

on a 9μm silicon membrane with an integrated gold planar 

antenna which is attached to the backside of a silicon lens to 

couple to free space. The mixer designs encompass both 

narrow-band and broadband antennas. Direct response 

measurements of two HEB-devices are presented. 
Keywords—HEB mixer, Archimedean spiral antenna, 

double-slot antenna 

I. INTRODUCTION 

We are currently developing a Hot Electron Bolometer 

(HEB) mixer for the high resolution observation of 

molecular hydrogen at 10.7 THz. The observation of the 

weak emission feature of the electric quadrupole transition 

of H2 at 10.7 THz (28 μm) requires high spectral resolution 

which only a heterodyne system can supply. The mixer uses 

a Niobium Nitride (NbN) HEB microbridge as the mixing 

element. This microbridge is integrated with a gold antenna 

on a high resistivity silicon substrate that is subsequently 

glued on a silicon lens. The mixer was initially intended to 

fly on the Stratospheric Observatory for Infrared Astronomy 

(SOFIA) [1] whose operational time was recently shortened 

to the end of September of 2022. 

II. DESIGN 

The receiver is based on a concept with integrated lens-

antenna. A 9μm thick, high resistivity silicon membrane with 

an integrated planar antenna is directly attached to the flat 

backside of a silicon (Si) lens to couple to free space. The Si 

lens consists of an extended hemisphere with a radius of 

0.5mm and a cylindrical extension of 164μm. The RF 

components are integrated in a tellurium copper housing 

with IF-board (see Fig.1). The front of the block has an about 

14° slope to avoid reflections of a possibly not perfectly 

matched local oscillator (LO) beam, which would lead to 

standing waves in the LO path negatively influencing the 

stability of the receiver. The copper mixer housing is the 

reference towards the further receiver optics. 

To enable a very accurate positioning of the antenna 

relative to the center of the lens and to the copper mixer 

housing the silicon membrane contains additional markers. 

With respect to both, the block-assembly and the lens-

assembly markers, the antenna is referenced with an 

accuracy of approximately 1μm. 
 

 

Fig. 1: Sketch trough the cut of the copper receiver housing. 
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The broadband and narrow-band RF-circuits presented 

here are based on a double-slot antenna with RF-choke and 

an Archimedean spiral antenna. They are composed of a 

70nm thick gold layer. A main challenge of the RF-circuit 

designs is to allow a good power transfer at the HEB-antenna 

interface within the constraints given by the high HEB layer 

resistivity and the natural limitation in the dimensions of the 

RF-structures given by the fabrication technique. The high 

frequency requires a smaller feed than can be reliable 

fabricated which leads to a non-vanishing imaginary part in 

the port-impedance for the Archimedean spiral antenna. The 

geometric specifications of the spiral antenna are given in 

Tab.I. The reflection at the HEB-antenna interface is 

depicted in Fig. 2 for different resistance values for the HEB 

microbridge in the center of the Archimedean spiral antenna.  

Five different versions of a double-slot antenna have been 

fabricated to account for potential uncertainties for instance 

given by fabrication tolerances and uncertainties of the 

material properties (silicon at operating frequency and 

cryogenic temperatures[2], SiO2 (bridge substrate), Au 

resistivity). The full-wavelength slots are between 9 to 

10.3μm long, with slot-distances between 5 and 5.6μm. The 

RF-choke is directly attached to the antenna as shown in 

Fig.3. It blocks the RF-signal and presents a short circuit at 

the antenna side at the operating frequency. It consists of 7 

lambda-quarter high and low impedance CPW lines. There 

are fabricated versions where the CPW line at the antenna 

interface partly is shortened/elongated to study the effect of 

the filter on the antenna resonance. The effect of the filter on 

the input impedance at the antenna terminal is exemplarily 

depicted in Fig.4 for the maximum and minimum value 

which is assumed to be obtained for the given resistivity and 

aspect ratio of the HEB microbridge integrated at the antenna 

terminal. 

TABLE I.   

Geometrical specifications 

 

w 1 μm 

s 1 μm 

wcp 0.5 μm 

lHEB 120 nm 

rmin 1.74 μm 

Number of turns 1.75 
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Fig. 2:  S11-parameters  at the HEB-antenna interface of the Archimedean 

spiral antenna for different resistance values of the HEB. 

 
Fig. 3: SEM picture of fabricated double-slot antenna with RF-choke. 

 

 
Fig. 4: S11-parameters at the antenna-HEB interface of the double-slot 

antenna for different resistance values of the HEB. 

III. MEASUREMENTS 

First batches with different mixer designs have been 

fabricated using a combination of E-beam and UV 

lithography. The local oscillator for the Heterodyne 

measurement is still pending. Therefore first investigations 

of the fabricated devices are done using the mixers as direct 

detectors of a Fourier Transform Spectrometer (FTS) as 

sketched in Fig.5. The measurement frequency range is 

restricted by the optical components in the setup to 3 - 12 

THz (see Fig.5). The HEB-devices are operated around their 

critical temperatures and are DC-biased in the constant 

current mode via a Bias-T, with a stable bias point in the IV 

curve of the HEB set as indicated as black dot in Fig.6. The 

spectra have been measured with the maximum FTS 

resolution of 0.08 cm−1 as an average over 5 to 12 spectra. 

Fig.  5: (a) Transmission characteristics of different optical components 

used in the Fourier Transform Spectrometer setup and (b) their location in 

the FTS setup. 

 

IV. RESULTS 

 From a batch with in total 80 RF-chips so far two HEB-

devices have been characterized, which are based on one 

double-slot antenna and one Archimedean spiral antenna, 

respectively. The raw and calibrated response spectra are 

depicted in Fig. 7 and Fig .8. The calibration takes into 

account the transmission characteristic of the FTS and dewar 

vacuum windows, the IR-filter and the transmission 

spectrum of the empty FTS, which is measured with the 

internal detector of the FTS and mainly depicts the spectral 

transmission of the FTS-beamsplitter. The very large 

attenuation of the FTS-signal contributed by the sum of all 

optical components at 11.4 THz does not allow a reasonable 

assessment of the measured spectrum around that frequency 

and yields an artefact in the calibrated spectra. 

The Archimedean spiral antenna based HEB-device 

shows a slightly wavy steady response signal over the whole 

measurement frequency range of the setup as to be expected 

from simulation results (see Fig .7). For the HEB-device with 

the double-slot antenna (see Fig. 8) a distinct linearly 

polarization-dependent response behavior could be shown 

by means of a grid placed in the optical pathway between 

FTS and dewar window. The device exhibited maximum 

response in the dedicated linear polarization direction of the 

antenna and no response for the respective cross-polarized 

radiation. The response spectrum (see Fig. 8) exhibits a 

 

(a) 

 

 

 

(b) 

Fig. 6:  IV curve of an HEB-device operated around its 

critical temperature. The black dot indicates the typical 

location of the bias point chosen for operation. 
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response peak around 10 THz and one pronounced peak 

around 7.5 THz. The response peak around 10 THz 

corresponds to the full-wavelength resonance of the antenna. 

Based on simulation results carried out with CST Microwave 

studio[3], the response peak around 7.5 THz likely 

corresponds to a resonance, where the double slot antenna 

behaves as four, in-phase driven lambda-quarter slot pieces. 

 

 
(a) 

 
(b) 

 
Fig. 7: Spectral direct response ((a) raw and (b) calibrated data) of HEB-

device based on the Archimedean spiral antenna.  

 

 
(a) 

 
(b) 

 
Fig. 8: Spectral direct response ((a) raw and (b) calibrated data) of HEB-

device based on the double-slot antenna with RF-choke (Antenna: slot-

length: 9μm, slot-distance: 5.6μm, slot-width: 0.3μm, CPW between slots: 

inner conductor width: 0.8μm, slot width: 0.3μm). 

V. CONSLUSION 

 

Direct response of HEB-devices based on a narrow-band 

and a broadband antenna have successfully been measured 

within a frequency range from 3 - 12 THz. Measurements of 

further HEB-devices including double-slot antennas, 

Archimedean spiral antennas and logarithmic spiral antennas 

will follow soon with an improved FTS-setup with a better 

signal-to-noise-ratio around 11.4 THz.  
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