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Abstract— Travelling wave parametric amplifiers (TWPAs) 
made from highly nonlinear reactive superconducting thin 
films have been demonstrated to be a potentially viable 
quantum-noise-limited amplifier technology for various 
fundamental physics platforms, including microwave/mm/sub-
mm astronomy, dark matter search experiments, neutrino mass 
experiments and qubit readout.  To date, only a limited number 
of successful kinetic inductance TWPA devices have been 
reported, with the majority fabricated from the same material, 
niobium titanium nitride (NbTiN), although in principle any 
highly nonlinear superconducting film can be used for kinetic 
inductance TWPA fabrication. Here, we present a detailed 
analysis of titanium nitride (TiN) transmission lines, to 
ascertain their suitability for use as kinetic inductance TWPAs.  
We will experimentally characterise our transmission line 
structures at cryogenic temperatures and compare the results 
with electromagnetic simulations.  This characterisation and 
analysis would allow us to understand the advantages and 
limitations of TiN films, and whether they are suitable for 
applications as kinetic inductance TWPAs. 
Keywords— Low-noise, Amplifier, Superconducting, RF, 
Microwave, Travelling-wave 

I. INTRODUCTION 
Kinetic inductance travelling wave parametric amplifiers 

(KITWPAs) [1, 2] are quantum devices, which can achieve 
high gain over broad bandwidth. They exhibit quantum-
limited noise performance with negligible heat dissipation 
and their ease of fabrication makes them readily scalable to 
arrays for large pixel count applications, such as the readout 
of astronomical detector arrays. 

The operation of a KITWPA, is reliant on the inherent 
non-linearity of the kinetic inductance of thin 
superconducting films. The majority of KITWPAs reported 
in the literature comprise a long superconducting 
transmission line patterned with a niobium titanium nitride 
(NbTiN) film [3], which is typically cooled to sub-Kelvin 
temperatures during operation.  In principle, a KITWPA can 
be fabricated from any superconducting film that displays a 
high kinetic inductance, such as titanium nitride (TiN).  TiN 
films have found applications in superconducting micro-
resonator detectors, such as MKIDs, due to their high kinetic 
inductance, controllable critical temperature (Tc) and 
physical robustness [4].  TiN films have additionally been 
shown to display extremely low losses compared to other 
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superconducting films [5].  Despite this, NbTiN films have 
proved a popular choice for KITWPA fabrication due to their 
high Tc making them better suited for applications at 4 K, 
such as heterodyne receivers.  However, a plethora of 
applications at sub-Kelvin temperatures remain e.g., 
bolometric receivers and axion search experiments, and the 
negligible heat dissipation of KITWPAs allows for closer 
placement of the amplifier to the detector at the sub-Kelvin 
stage to further reduce signal loss. We, therefore, intend to 
explore the use of lower Tc TiN films for such applications 
and investigate additional possible advantages and/or 
limitations compared to the NbTiN film. 

Before venturing into designing a KITWPA using the TiN 
film, it is important to fully understand the behaviour of the 
thin film. Therefore, in the first part of the paper, we present 
an experimental investigation of the various properties of our 
TiN film using a set of simple transmission line structures to 
probe their characteristics, which are related to their 
application as KITWPAs. We further investigate and report 
on how the transmission line geometries and topologies 
would affect the performance of the KITWPA. Finally, 
following comprehensive film and design geometry 
characterisation results, we conclude the paper by reporting 
on the preliminary measurement results of a TiN KITWPA 
operating from 4-12 GHz range. 

II. RESULTS 
 

In this paper, we focus our study on a 100 nm thick TiN 
film with Tc = 4.39 K and resistivity rN = 140 𝜇Wcm, 
deposited on a 500 𝜇m thick sapphire substrate. Preliminary 
DC measurements of the thin film behaviour have already 
been performed to explore the IV characteristics of our TiN 
film.  Preliminary results yield a maximum DC current 
allowed to transverse through the TiN strip before it 
quenches of about 1.8 mA at 400 mK, which is consistent 
with the expected critical current (Ic) value for our TiN 
superconducting film of ~1 mA. The maximum current as a 
function of bath temperature is shown in Fig. 1a.  Fitting a 
linear trend to this data gives a max current of 2.2 mA at 0 K 
and zero current at 4.21 K, which are close to the expected Ic 
and Tc values, respectively.  These preliminary DC 
measurement results suggest that our TiN films are behaving 
as we would expect, 
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Fig. 1. (a) Maximum current through the superconducting strip as a 
function of the strip bath temperature.  (b) IMD spectrum for TiN 
superconducting strip at 10 mK.  (c) CAD image of an example 
resonator test structure. 

 

allowing progression onto RF characterisation of our TiN 
transmission line structures. 

In order to investigate the nonlinearity of the film, we have 
performed intermodular distortion (IMD) measurements, 
which involves sending two signals at different frequencies 
across a narrow band and measuring the non-linear cross 
terms.  The signal levels are set below the Ic and Tc of the 
film.  The results of this experiment are shown in Fig. 1b, 
which show the primary tones at frequencies f1 and f2 and the 
resultant third-order mixing terms.  No gain was observed 
during this experiment and the peak heights of all tones were 
lower than expected.  We can, therefore, confirm that there 
is nonlinearity present in our TiN films, but losses are higher 
than expected. 

To further investigate the broadband behaviour and 
loss/nonlinearity performance of our TiN film, we have 
designed a series of simple test structures using a commercial 
3D electromagnetic (EM) simulation software to obtain the 
required network parameters.  An example test structure is a 
lumped-element LC resonator, shown in Fig. 1c, which is a 
particularly useful probe of the film properties, since the 
changes in the current dependence inductance would lead to 

a shift in the resonant frequency as the applied current is 
varied.  The magnitude of the frequency shift can be used as 
a measure of the strength of nonlinearity, whilst the change 
in the depth of the resonance can be used to probe how lossy 
the film is.  An ideal KITWPA film would exhibit a strong 
frequency shift with minimal change in the depth of the 
resonance. 
 The broadband performance of a KITWPA could also be 
affected by various design issues, such as the choice of 
transmission line and its corresponding dimensions.  Most of 
the transmission line structures included in this study are 
based on co-planar waveguides (CPW) and include various 
combinations of the centre-strip and gap width ratio to 
explore the effect of geometry on KITWPA performance.  
To control the characteristic impedance of the transmission 
line, the CPW is shunted with additional capacitive stubs [6] 
(same width and gap dimensions as the main CPW), with 
their length optimised for a 50 W line.  We additionally 
employ equipotential bridges for the suppression of parasitic 
transmission modes. A simple measurement of the S21 
parameter will, therefore, confirm the feasibility of a 
particular dimension of test structure as a broadband 
transmission line and will also reveal the extent of losses in 
a long transmission line. 
 Our investigation also explores different transmission line 
topologies. Ideally, a KITWPA transmission line would be 
completely straight, however, the necessary long lengths 
make it impractical to achieve sufficiently high gains on a 
practical-sized chip.  In practice, the transmission line must 
instead be wrapped into a compact arrangement, such as a 
spiral or hairpin-style pattern.  The compactness of these 
arrangements may affect the performance of a KITWPA, due 
to cross talk between adjacent lines, so it is important that 
this effect is fully studied and understood. 

Finally, based on the detailed analysis of our test 
structures, we conclude the paper with a KITWPA design, 
which includes its predicted gain-bandwidth product and 
preliminary experimental results including gain and noise 
temperature measurements. 
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