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 

Abstract— In this work we present the initial development of 

an instantaneous multiband receiver with digital sideband 

separation for an extended W Band (67-116 GHz). In 

particular, we present the design and construction of a 

frequency diplexer that, thanks to the inclusion of a novel 

waveguide quadrature hybrid, shows an excellent behavior in 

the entire bandwidth. Moreover, we present a non-linear 

simulation of the entire receiver, including digital sideband 

separation. The results show complete RF coverage into four 

parallel IF outputs. 

Keywords— Heterodyne receivers, waveguide components, 

frequency conversion, frequency diplexers. 

I. INTRODUCTION  

The multiband heterodyne receiver proposed in [1] can be 

an alternative solution for the necessity of ultra-bandwidth 

systems in radio astronomy. It works with a frequency 

multiplexer that separates the RF bandwidth into a number 

of sub-bands that are down-converted independently.  This 

architecture allows to obtain the relevant RF spectrum into 

several parallel IF outputs. Since the multiplexer is a key 

component in this type of receiver, the work presented in [1] 

also proposed a versatile design based in quadrature hybrids 

and filters. If several of them are concatenated, it is possible 

to achieve a multiplexer with any number of outputs. 

Here we present a variation of this architecture that uses 

digital sideband (2SB) downconverters, and has been applied 

to an extended W band (67116 GHz). The initial 

development includes the design and construction of a 

broadband frequency diplexer with relaxed mechanical 

constraints for easing the manufacture process. The diplexer 

uses a novel waveguide quadrature hybrid [3] with state-of-

the-art performance. 

 

II. PROPOSED MULTIBAND RECEIVER 

Fig. 1 presents a general diagram of the multiband 

downconverter proposed in this work, which has the 

potential of covering the entire RF spectrum instantaneously. 

The complete RF coverage can only be implemented using a 

digital IF hybrid since, in contrast to its analog counterpart, 

it is not limited at lower frequencies. Then, by placing the 

LO frequency at the center each sub-band, total RF coverage 

can be achieved. Since this architecture divides the analog 

RF spectrum into two bands with half of the bandwidth, it 

offers two additional advantages besides the instantaneous 

access to the entire RF spectrum. (i) Reduction of the 

operational bandwidth needed for the electronics of each 

sub-band. (ii) As a consequence of this bandwidth reduction, 

further optimization can be archive in the performance of the 

receiver, reducing its overall noise temperature. 
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Despite the possibility of solving various problems in radio 

astronomy, not much work has been done in developing this 

type of architecture. The main reason is the limitation of IF 

processing capabilities. However, in recent years, with the 

development of faster digital processing platforms, this 

limitation could be overcome in the near future. 

 

III. WAVEGUIDE QUADRATURE HYBRID 

In this section, we present a modified branch-line 

waveguide quadrature hybrid that besides achieving an 

excellent performance over a large fractional bandwidth, 

exceeding 50%, eases construction constraints. This 

breakthrough was accomplished by implementing the branch 

lines with a larger height than the main lines, which results 

in widening the former, and so, reducing the height-to-

diameter ratio of the tool needed to mill them. We have 

applied this new concept to cover an extended W band 

because the frequency diplexer presented in this work needs 

a quadrature hybrid that covers its complete RF operational 

bandwidth at its input. 

The modified waveguide branch-line coupler proposed in 

this work is presented in Fig 2. For this particular design, a 

tool with a ratio larger than 6.23 is needed, which is well 

below overmoded hybrids with similar bandwidths [3]. The 

proposed hybrid was simulated in ANSYS HFSS, showing a 

return loss over 20 dB, an amplitude imbalance below 0.5 

dB, and a phase imbalance, ∆φ, within ±1°. Measurements 

are in good agreement with simulations. They show a return 
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Fig. 1. Concept of a multiband heterodyne receiver with digital 2SB 

receivers for the extended W-band. The input RF signal is separated into 
two frequency bands with a diplexer, a device that is capable of selectively 

routing the signal depending on its frequency. The low (67-91.5 GHz) and 

high (91.5-116 GHz) RF ranges are transmitted to two independent digital 
2SB downconverters, 1 and 2. Each downconverter, then, separates the 

signals even more to Upper sideband (USB) and Lower Sideband (LSB) 

with the use of a image-rejection configuration. In this way, the system 
allows instantaneous acces to the entire RF range. 
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loss  over 20 dB and amplitude and phase imbalances below 

0.8 dB, and between −0.5∘  and +2∘, respectively.  

 

IV. FREQUENCY DIPLEXER 

 

A frequency diplexer, based on [4], was designed and a 

prototype was manufactured. Fig. 3 shows the complete 

design. The components are an input quadrature hybrid that 

covers the entire input bandwidth (67116 GHz), two high-

pass filters with a frequency cutoff of 91.5 GHz, a second 

quadrature hybrid with an operational bandwidth of 91.5 to 

116 GHz, and a low-pass filter to increase rejection between 

the two output bands.  

The diplexer was simulated in ANSYS HFSS and the 

results are presented in Fig. 4. The simulations used a finite 

aluminum conductivity boundary condition and an ideal RF 

load. The |S21| and |S31| parameters show the transmissions of 

the lower band and the upper band respectively, with an 

interception point exactly at 91.5 GHz. The cutoff slope for 

each band matches the behavior of the bandpass filter. The 

|S11| parameter presents good behavior with a reflection 

below 20 dB in the majority of the band. 

Fig. 4 also presents the scalar S-parameter measurements 

of the constructed prototype of the diplexer. In the |S21| and 

|S31| parameters, we can see two well-defined transmission 

bands for the lower and upper-frequency outputs. The 

interception point between the two frequency bands is at 

90.98 GHz, approximately 500 MHz apart from its expected 

value. However, the shape of the cutoff slope of the |S21| and 

|S31| parameters differ from the simulation. We can explain 

these differences due to manufacturing errors in the high-

pass filter sections of the constructed block. These errors 

could also partially explain the behavior of the |S11| 

parameter, as the lower-frequency band presents an overall 

higher value in comparison with the upper-frequency band. 

This difference is produced by asymmetries between the two 

band-pass filters, producing an ineffective cancellation of the 

reflected wave at the input port. Another possible cause for 

the increment in reflections is the poor performance of the 

low-pass filter placed at port 2.  The diplexer losses possess 

an average value of 1.5 dB for the entire band and have good 

agreement with the simulations, only increasing at points of 

high reflection for the lower-frequency band and at the lower 

and upper edges in the upper-frequency band. The increase 

in the upper band can be also explained by asymmetries in 

construction, dissipating the remaining power at the load.  

 

V. RECEIVER SIMULATIONS 

In a three-step simulation, we have studied the response of 

a receiver using the previous diplexer in conjunction with 

realistic Schottky-based 2SB downconverters using a digital 

IF hybrid [2]. The first step uses ANSYS HFSS to simulate 

the majority of passive components such as the diplexer, 

waveguide-to-microstrip transitions, and microstrip IF paths. 

The second step is to use Cadence AWR in conjunction with 

the imported HFSS results to simulate the entire analog 

receiver using the harmonic balance nonlinear method, this 

includes MMICs I/Q mixers. The results (in  

Fig. 5) show that the receiver’s conversion loss allows 

complete RF bandwidth coverage over the four IFs. In the 

final step, utilizing the information of harmonic content, the 

IF outputs were reconstructed as input data for a simulation 

utilizing the digital sideband separation method [5]. Results 

(also in Fig. 5) show an excellent performance after 

calibration, with a sideband rejection ratio (SRR) of 50 dB, 

allowing each IF channel to receive the signal for its specific 

sub-band with excellent isolation.   

VI. CONCLUSIONS & FUTURE WORK 

In this work, we have presented a multiband receiver 

architecture with digital 2SB that shows the feasibility of 

total broadband RF coverage through parallel IF outputs. 

 
Fig. 2.  Modified quadrature Hybrid. (a) CAD image.  (b) Simulation and 

measurements results of the constrcuted prototype. 

 

 
Fig. 3.  CAD view of the complete diplexer, showing all of its components. 

The inset shows a photograph of its implementation as split-block. 

 

 
 Fig. 4.   Simulated and measured S parameters of the diplexer. 

 

 
Fig. 5.   Results of non-linear simulation of the convertion loss of the 

reciever and SRR with the digital sideband separation. 
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One of the key components, a fully functional waveguide 

diplexer, that utilizes a state-of-the-art waveguide hybrid, 

was also presented. 

As a future work we plan to manufacture a new diplexer 

prototype without the low-pass filter to study its effect in the 

diplexer performance. Then, we propose to build the 

downconverter prototype and test it utilizing a second down-

conversion stage with smaller IF bandwidth and a mobile 

LO, and implement digital sideband separation in a FPGA-

based backend. 
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