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Abstract—Superconducting traveling-wave parametric am-

plifiers are a promising amplification technology suitable for 

applications in submillimeter astronomy. Their implemen-

tation relies on the use of Floquet transmission lines in order to 

create strong stopbands to suppress undesired harmonics. For 

design, amplitude equations are used to predict their gain. 

However, they do not take into account the complex dispersion 

and impedance that result from the use of Floquet lines, 

hindering reliable design. In order to overcome this limitation, 

we have used the multiple-scales method to include those 

effects. We demonstrate that complex dispersion and 

impedance have a stark effect on the gain, even suppressing it 

completely in certain cases. The equations presented here can, 

thus, guide to a better design and understanding of the 

properties of this kind of amplifiers. 

Keywords—Superconductors, parametric amplifiers, gain. 

I. INTRODUCTION 

Achieving larger bandwidths at the RF and IF bands, and 

improving receiver sensitivity are major challenges for 

future millimeter and submillimeter heterodyne 

observations. Consequently, extensive work is being 

performed in order to improve the performance of SIS 

junctions and HEMT amplifiers, the key components of 

current state-of-the-art receivers. However, this approach 

may soon hit fundamental limitations and improving 

bandwidths will eventually only be obtained at the expense 

of sacrificing noise temperature [1]. Recently, a promising 

superconducting technology that could overcome this 

problem has emerged [2]. It uses the kinetic inductance (KI) 

manifest in superconductors to produce parametric 

amplification in a long transmission line (TL). Devices 

working with this principle are dubbed Traveling-Wave 

Kinetic-Inductance Parametric Amplifiers (TKIPAs). 
The KI modifies the wave-equation of the current through 

the TL by adding a nonlinear term which allows mixing of 

amplitudes when more than one monochromatic signal is 

injected [3]. Hence, it is possible to amplify the input signal 

if other tones, called pumps, are simultaneously injected. 

Nonetheless, more signals, including undesired harmonics, 

are also generated, deterring the amplification process. Eom 

et al. solved this problem by implementing a Floquet TL, 

conformed by a periodically repeating unit cell, creating 

stopbands that avoid the propagation of the main undesired 

harmonic of the pump signal. The use of such a line, 
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however, translates into a TL with more intricate properties, 

namely a complex dispersion and impedance with strong 

frequency dependencies, particularly close to the stopbands. 
In order to design TKIPAs, a nonlinear wave equation 

must be solved. This is usually done by approximating the 

process of amplitude gain as a dynamical evolution occur-

ing at a much larger length scale than the wavelength of the 

involved signals. Within this approximation, not taking into 

account the complex nature of the Floquet TL, a set of non-

linear amplitude equations can be obtained [2]. An attempt 

to introduce a complex propagation constant in the process 

has been reported [4], but some unjustified approximations 

that are not valid near the stopbands were used.  
We have tackled this problem by formally solving the non-

linear wave equation using the multiple-scales method, 

widely used in mathematical nonlinear physics, and 

especially useful in traveling-wave equations [5]. We 

demonstrate that the properties of the Floquet TL have a 

profound effect on the attainable gain, in particular when the 

pump signal is close to a stopband. Depending on the specific 

properties of the used Floquet TL and the amplitude and 

frequency of the pump signal, our equations depart notably 

from the predictions given by the traditional amplitude 

equations. 

II. AMPLITUDE EQUATIONS INCLUDING COMPLEX 

DISPERSION AND IMPEDANCE 

From the telegrapher's equations and the total inductance 

in a superconductor, 𝐿(𝐼) = 𝐿0(1 + 𝐼2/𝐼∗
2), it is found that 

the dynamics of the electric current 𝐼 through a TKIPA is 

described by a nonlinear wave equation, 
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where 𝐼∗ determines the scale of the nonlinear term. 𝐶, 𝑅, 𝐺, 

and 𝐿0 are the parameters per unit length of the TL used to 

implement the TKIPA, i.e., capacitance, resistance, 

conductance, and inductance at zero current, respectively. 

Equation (1) can be solved with the multiple-scales 

method considering that the nonlinear term will produce a 

modification of the wave amplitudes at a much smaller rate 

than the wavelength. In order to correctly apply the method 
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at first order, the terms in (1) must be balanced. The 

balancing depends on the magnitudes of 𝐶, 𝑅, 𝐺, 𝐿0, the 

propagation constant 𝛾, the frequency 𝜈, and the initial 

magnitude of current, |𝐼(𝑧 = 0)|. However, the parameters 

of a Floquet TL depend strongly on 𝜈, especially near the 

stopbands. This implies that the first order balancing of (1) 

gives different results at different frequencies. For achieving 

high amplification, the most relevant case occurs very close 

to the stopbands. Then, if the multiple-scales method is 

applied around this frequency and considering three pro-

pagating signals, signal (𝑠), idler (𝑖) and pump (𝑝), we obtain 
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2 )),  𝑚 = 𝑠 , 𝑖, 𝑝,  𝛾 = 𝛼 +
𝑗𝛽 is the propagation constant, 𝜂 = 𝑟 + 𝑗𝑥 is the complex 

characteristic impedance, and Δ𝛽 = 2𝛽𝑝 − 𝛽𝑠 − 𝛽𝑖. 

Equations (2) differ from the model where 𝛼 and 𝑥 are 

neglected but, importantly, reduce to it. 

III. SIMULATIONS AND DISCUSSION 

We designed a CPW Floquet TL (Fig. 1.a) that has 

stopbands that allow suppressing undesirable harmonics and 

present a high non-linear dispersion relation 𝛿𝛽(𝜈) ≡
𝛽(𝜈) − 𝛽0(𝜈) for operation near the stopbands. Fig. 1.b 

shows this effect around the 2nd stopband. Literature usually 

neglects 𝑥 but Fig.1.c shows that it cannot be so since it 

significantly increases near the stopbands.  Indeed, as shown 

in Fig. 1.d, very different gains of the target signal are 

obtained when the old (neglecting 𝛼 and 𝑥) and the new 

model (given by equations 2) are compared. This figure 

shows two cases of different pump frequency. The case 𝜈𝑝 =

11.63 GHz shows larger gain with the new model. This 

occurs because the total phase mismatch of the complex 

amplitudes stabilizes thanks to the 𝑗𝑔𝑚𝐴𝑚  term in (2). The 

case 𝜈𝑝 = 11.73 GHz, in contrast, shows almost no gain 

with the new model. The reason is the 𝑗𝑔𝑚𝐴𝑚 term that 

dominates over the non-linear one, proportional to 𝑓𝑚. 

These results show that amplification larger than predicted 

by the old model is possible, and that the pump frequency 

cannot be too close to the stopband in order to achieve 

amplification.  

IV. CONCLUSIONS 

We have presented a new set of amplitude equations for 

TKIPAs operating at frequencies near stopbands where, 

unlike other models, the effect of complex impedance and 

dispersion have been considered. To highlight the key 

differences between the models, simulations were performed 

for a CPW Floquet transmission line, showing that the new 

model can predict either larger or smaller gain than the 

traditional one, depending on how close to the stopband is 

the pump frequency. This happens because one of the new 

terms added to the amplitude equations is capable of 

stabilizing the phase mismatch, hence obtaining larger gain, 

but is also capable of dominate over the non-linear term 

responsible of amplification, since its magnitude depends on 

the frequency. Research to experimentally demonstrate these 

effects is underway. 
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Fig. 1 (a) Unit cell of the used Floquet TL. (b) Dispersion relation 

near the 2nd stopband, where 𝛾0 = 𝛼0 + 𝑗𝛽0 is the propagation 

constant of the central line. (c) Complex impedance near the 2nd  

stopband. (d) Gain of the signal after traveling 𝑧/𝑑 = 150 unit 

cells for two values of pump frequency 𝜈𝑝 near the 2nd stopband, 

using an initial pump amplitude 𝐴𝑝
0 = 0.2 𝐼∗. 
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