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Abstract—Within this proceeding, we introduce the U-Board 

platform, a versatile platform for signal generation, acquisition 

and processing, based on a heterogenous processing 

architecture. Based on this platform we present a readout for 

Microwave Kinetic Inductance Detectors (MKIDs) for the A-

MKID camera for APEX. In addition to the implementation of 

the readout on this heterogenous architecture, we also present 

a first comparison of the performance of the readout compared 

to the currently used readout of the A-MKID camera. Last but 

not least, we discuss how we plan to miniaturize the current 

prototype, which is based on commercial off the shelf 

components. 

Keywords—MKID, Backend, Readout, FPGA, GPGPU, 

Heterogeneous architecture 

I. INTRODUCTION 

Microwave Kinetic Inductance Detectors (MKIDs) have a 

great potential for large and sensitive detector arrays for use 

in sub-mm wavelength imaging and mid-resolution 

spectroscopy [1]. As these detectors are superconducting, 

notchfilters with a high-quality factor, they can be easily 

multiplexed in the frequency domain to allow for detector 

arrays with a high number of detectors [2]. Furthermore, the 

fabrication process is based on conventional optical or 

electron beam lithography, which leads to simple and 

reliable production. Also, the detectors can achieve photon 

noise limited sensitivity performance [3]. Due to the break-

up of Cooper-Pairs by photons in the superconductor, the 

resonance frequency of MKIDs is a function of the photon-

flux onto the detector.  

To read out such detectors, the phase and amplitude 

changes of a readout tone placed close to the resonance 

frequency of the detector can be used. For this readout 

technique, the backend has to generate a tone for each 

detector, close to the detector’s resonance frequency. The 

amplitudes and phases of these tones are then altered due to 

the interactions with the notch-filters of the detectors. At the 

end, each tone is analyzed again by the backend and the 

photon flux is determined based on the changes of signal, 

especially based on the phase change of the signal. 

Therefore, a backend for reading out MKIDs needs a phase 

coherent signal generation and acquisition combined with 

the processing power needed to generate and analyze the 

readout signal. The U-Board platform combines the 

strengths of General Purpose Graphical Processors 

(GPGPUs) and Field Programmable Gate Arrays (FPGAs), 

together with a phase stable signal generation and acquisition 

in the analog frontend. This platform is optimally suited to 

implementing a MKID readout. 

The A-MKID instrument is a dual-color incoherent 

camera for the APEX telescope [4], which offers excellent 
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observation conditions up to 300 μm based on MKIDs. The 

high frequency array is sensitive to 350 μm and the low 

frequency array is sensitive to 870 μm [5]. Both arrays are 

co-aligned and observe the same area of 15 arcmin x 

15 arcmin of the sky. The nominal resonance frequencies of 

the detectors lie between 4 GHz and 8 GHz. In total the 

camera has 24 readout chains, where each chain hosts 

between 680 to 880 MKIDs. 

The readout presented here is optimized for the A-MKID 

camera. Therefore, it aims for an analog bandwidth of 4 GHz 

for up to 1280 tones. The processing is based on a one 

million channel Fast Fourier Transformation (FFT), which is 

split between the FPGA and GPGPU. Furthermore, 

additional processing and reduction steps are migrated to the 

GPGPU to reduce the work-load on the controlling 

computer. It should replace the currently used readout of the 

A-MKID camera, which uses a heterodyne mixing scheme 

and lower resolution converters and therefore limits the 

performance of the camera. 

II. THE U-BOARD PLATTFORM 

In recent times, the performance of Digital-Analog-

Converters (DACs) and Analog-Digital-Converters (ADCs) 

have not only improved strongly, but also the processing 

power of FPGAs and GPGPUs has increased a lot. This 

opens up new possibilities to build wideband readouts for 

MKID cameras, which can handle a thousand detectors per 

readout chain. Furthermore, the development of GPGPU 

modules for embedded systems, has removed the need for 

dedicated computers for hosting the GPGPU. This allows for 

compact heterogeneous architectures based on FPGAs and 

GPGPU modules. In the following, we will discuss the U-

Board platform based on commercial off the shelf 

components as shown in Fig. 1, with an analog frontend 

optimized for the readout of the A-MKID camera. 

A. Analog frontend and IF processing 

To reduce the phase noise between a number of local 

oscillators (LOs), a homodyne mixing scheme is 

implemented. Therefore, the same LO is used for up and 

down conversion of the baseband signals. For this up and 

down converting IQ-mixers are used to reduce the required 

bandwidth of the DACs to 2.1 GHz, which allows the 

selection of 16 bit DACs. Furthermore, the IQ-mixers allow 

for a digital optimization of the sideband separation. The 

concept of the analog frontend and the IF processing is 

shown in the left part of Fig. 3. 

For the signal generation, two DACs of the type AD9174 

are used, each of which can generate a signal with a 
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resolution of 16 bit with an instantaneous bandwidth of up to 

3.08 GHz. The signal acquisition is done with a single 

ADC12DJ5200RF, which can sample an instantaneous 

bandwidth of up to 5.2 GHz with a resolution of 12 bit. The 

ADC is used in dual channel mode, where each channel has 

an instantaneous bandwidth of up to 2.6 GHz and typically 

an effective number of bits of 8.7. 

B. Heterogeneous architecture 

Both FPGAs and GPGPUs have their own strengths and 

weaknesses. FPGAs are per definition hard real-time capable 

and have flexible connection options. The combination of 

hard real-time capabilities and flexible interfacing options 

make possible to connect high-speed DACs and ADCs 

electrically and protocol wise. Furthermore, FPGAs have 

good integer processing power. But, their floating-point 

processing power and memory size are limited. Nether the 

less, the onboard memory of FPGAs has a bandwidth with 

very low latencies. GPGPUs on the other hand, do not have 

hard real-time capabilities, but need carefully designed 

buffers to ensure soft real-time capabilities. This behavior, is 

due to the fact, that GPGPUs can only be used in 

combination with an operating system. But, compared to 

FPGAs, GPGPUs deliver a higher floating-point processing 

power and have huge memory space. These memories also 

have a high bandwidth (not as high as the memory on 

FPGAs), but the latency of the memory is much higher. Last 

but not least, the GPGPU have a programming model, which 

is much closer to conventional software programming 

compared to the hardware description language used for 

FPGAs. This allows for faster implementations of new 

algorithms and ideas. 

The idea of a heterogeneous architecture, based on FPGAs 

and GPGPUs, is to combine the strengths of both 

architectures. Two possible interconnections can be used to 

connect FPGAs and GPGPUs; high speed Ethernet (e.g. 

100 Gbit/s) and PCIe. Ethernet can be set up for multicast 

applications, where one source sends data to multiple sinks, 

while PCIe is used for more point-to-point like connections. 

The disadvantage of high-speed Ethernet is, that the 

infrastructure costs (e.g. fiber links, switches, network cards) 

is significant. Therefore, high speed Ethernet has advantages 

only for applications, which rely on multicast data transfers 

(e.g. beam former). In heterogeneous architecture based on a 

PCIe interconnect, the FPGA and GPGPU are typically 

hosted in a powerful computer, as neither the FPGA nor the 

GPGPU are fully suited as PCIe host. This approach is again 

raising additional costs due to the requirements to host a 

FPGA and a GPGPU in a computer. Furthermore, a 

computer per FPGA is not compatible with the space 

requirements of typical backends, as the space close to the 

instrument is limited. An alternative to using a conventional 

computer to host both, the FPGA and the GPGPU, are the 

Jetson modules produced by Nvidia. These systems on a 

module include a multicore ARM CPU, a high performance 

GPGPU and a huge, high bandwidth memory region. These 

Jetson modules can be used as a PCIe host to which the 

FPGA is connected. This allows for a simple and fast point 

to point connection between the FPGA and the GPGPU. 

To speed up the development time, we first developed a 

prototype mostly based on commercial off the shelf 

components, which is shown in Fig. 2. Only the analog 

frontend with the DACs and ADCs is hosted on a custom 

printed circuit board. This analog frontend is connected with 

a high-speed connector (FMC+) to the evaluation board 

VCU118 from Xilinx. From the hardware present on this 

evaluation board, we utilize FPGA, an UltraScale+ Virtex 9, 

as well as one of the DDR4-Memory banks for the MKID 

readout. The FPGA evaluation board is then connected to a 

Fig. 1. The architecture of the U-Board prototype based on commercial off the shelf hardware. The DACs and ADCs are hosted on a custom PCB, which 

is connected to FPGA with high speed serial links (JESD204C). The FPGA (UltraScale+ Virtex 9) is from the high performance series of UltraScale+ 
FPGAs. Additional to the internal memory of the FPGA two 80-bit wide DDR4 memories are associated with the FPGA. The FPGA is finally connected to 

the Jetson GPGPU Module via a PCIe connection. 

 

Fig. 2. The Picture of the prototype based on the commercial off the shelf 
hardware. In the foreground, the analog frontend, based on a custom PCB, 

is visible. This frontend is connected with a high-speed connector (FMC+) 

to the evaluation board VCU118 from Xilinx, which hosts the FPGA and 
the associated DDR4 memory. In the background, the GPGPU development 

Kit from Nvidia, with the Jetson GPGPU Module, is visible. This module is 

connected to the FPGA via PCIe. 
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development Kit from Nvidia with 8 lanes of PCIe 3. The 

development Kit from Nvidia is built around the Jetson Orin 

AGX module, which supplies the platform with 2048 CUDA 

cores (the GPGPU part of the module), 32GB of memory and 

12 CPU cores, for housekeeping and controlling. 

III. READOUT 

In the following we will discuss how the readout is 

implemented based on the platform described above, and 

then give a preliminary comparison to the currently used 

readout for the A-MKID camera. 

A. Implementation of the readout 

The readout is based on a one million point FFT, which is 

split into a first stage on the FPGA and a second stage on the 

GPGPU. Therefore, the possible frequencies of the readout 

tones are limited to a finite grid with an approximate spacing 

of 4 kHz. The concept of the readout and its division onto the 

FPGA and GPGPU is shown in the right part of Fig. 3. 

The waveform for the signal generation via the DACs is 

streamed via the FPGA from the DDR4-memory to the 

DACs. While setting up the readout, this waveform is 

generated on the GPGPU based on the determined positions 

of the MKIDs. The generation of the waveform also takes 

into account a frequency dependent calibration of signal path 

from the DACs to the IQ up converter, to compensate for 

differences between the I and Q paths, as well as non-

perfection in the IQ-mixer itself. Furthermore, blindtones are 

added to the waveform, which are used to correct for 

amplitude and phases changes due to changes of the system 

(e.g. drifting reference voltages, changes in propagation 

delay).  

The real-time analysis of the digitized signal is split 

between the FPGA and the GPGPU. The first processing step 

is an 1M (220) point FFT. This FFT is split between the 

FPGA and the GPGPU, as described in the following. On the 

FPGA, 16 parallel FFTs of size of 64k are calculated in fixed 

point (see 16x 64k FFT in Fig. 3). Then the frequency bins 

of this FFTs, which contain the tones, are selected and 

transferred to the GPGPU via PCIe (see Channel Mask in 

Fig. 3). This reduces the data rate, which has to be transferred 

via PCIe, and further reduces the workload on the GPGPU. 

On the GPGPU the results from the 16 parallel FFTs are 

combined into the result of the 1M point FFT with a modified 

Discrete Fourier Transformation, which takes the calibration 

for the sideband separation of the down converter into 

account. This result corresponds to the complex S21 value of 

the system. The results of the consecutively calculated FFTs 

are interpreted as time-data with a sample rate of 
4 GHz

220 =

4.01 kHz, which carry the changes of the photon flux on the 

detectors. In the next step, the data rate of this time-data is 

further reduced with a configurable filter (configurable 

length and coefficients) and a down sampling stage. The 

down sampling stage allows for an integer down sampling 

ratio; therefore, the possible sampling rates are 
4.01 kHz

𝑛
 with 𝑛 ≥ 1. 

To reconstruct the phase change of the readout tone with 

respect to the MKID resonance, the FFT channels are first 

divided by the blindtones. This enhances the stability of the 

system as common, unwanted effects (e.g. drift of voltage 

references, changes of the propagation delay) are 

compensated for. In the next step, the calibration of the 

MKID is applied to map the complex S21 to the phase 

change with respect to the resonance. This phase change can 

be used to extract the frequency shift of the resonance, 

especially as the relationship is linear for small frequency 

shifts, which is the operation point of the A-MKID camera. 

All these reconstruction steps are implemented on the 

GPGPU. Finally, the data is streamed out of the Jetson 

Module to the controlling computer. 

The readouts for one camera color are controlled by a 

central software instance on a computer (as shown in Fig. 5). 

All readout chains are connected via a high-speed Ethernet 

(e.g. 40 Gbit/s) to the controlling computer. Over this 

connection the chains are controlled, and the reduced data is 

sent from the chain to the computer, where all data streams 

are merged. The merged data stream is then sent out via 

another high-speed Ethernet connection to the telescope 

infrastructure. 

B. Performance of the readout 

In the following, we will briefly compare the performance 

of the readout based on the U-Board platform with the 

performance of the currently used readout for the A-MKID 

camera. The currently used readout uses a more complicated 

Fig. 3. The concept of the implemented MKID readout based on the U-Board for a single chain. The IF processing and analog frontend uses a homodyne 

mixing schema based on IQ-mixers to deliver 4GHz of usable, instantaneous bandwidth for reading out the MKIDs in the detector array. The signal with 
the readout tones is streamed from the DDR4-Memory associated with the FPGA. For the signal analysis, the first step is a one million point FFT split 

between the FPGA and GPGPU. Here only the spectral channels, which include a tone, are transferred and processed on the GPGPU. To reduce the data 

rate the complex results of the FFT are downsampled with a configurable antialiasing filter. Finally, the phase change due to the shifting of the MKIDs is 

extracted and send out via Ethernet. 
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heterodyne mixing approach. Furthermore, the resolution of 

the DACs and ADCs is smaller. Particularly, the ADC only 

has 7.6 effective number of bits. Therefore, we expect a 

better performance of the presented readout compared to the 

readout currently under use. 

In order to compare the performance of the two readout 

systems, measurements with the identical chain of detectors 

and the identical optical path are executed. The performance 

is measured with a noise scan, which is calibrated with a 

wirescan. For the noise scan, the camera is pointing at a 

bucket with liquid nitrogen, which is used to simulate the sky 

at APEX. The wirescanner moves two cables (one in x- and 

on in y-direction) in front of the liquid nitrogen through the 

field of view of the camera. These cables generate a signal 

of reproducible and known strength, which is used to 

calibrate the noise amplitude in the noise scan. As these 

measurements are done with a non-final optical filter stack 

and under laboratory conditions, the results are only 

preliminary. 

In Fig. 4 the measured histograms, one for each readout, 

 of the sensitivities of one chain of the camera are shown. 

The green histogram represents the readout based on the U-

Board platform, as presented here. The blue histogram shows 

the performance of the currently used readout. Two 

important aspects are visible in this figure. Firstly, the 

readout based on the U-Board platform gives a better 

sensitivity. This is expected, as the currently used readout is 

limiting the camera performance and the U-Board based 

readout uses ADCs with better performance. Secondly, the 

yield of MKIDs is higher. This is one of the benefits of using 

a side band separating, homodyne mixing scheme instead of 

a non-sideband separating, heterodyne mixing scheme. The 

separation of side bands reduces the number of MKIDs, 

which are close to each other in the baseband. These close 

MKIDs are not suitable for operation, as the crosstalk 

between them is significant. 

IV. OUTLOOK AND CONCLUSION 

We have presented a MKID readout, based on a 1M FFT, 

with a bandwidth between 4 GHz and 8 GHz, which is 

implemented on the U-Board platform, a heterogeneous 

architecture. The various processing architectures in the U-

Board allow for a complete implementation of the online 

reduction pipeline on the backend. This reduces the 

requirements regarding the central, controlling computer. 

The choice of an FFT based approach, with 1M points, 

allows for a high maximal sample rate of 4 kHz and a fine 

grid of possible readout tone positions (also 4 kHz). 

Furthermore, the prototype based on the U-Board 

architecture for the A-MKID readout is performing better 

than the currently used readout, both in terms of sensitivities 

and in terms of yield. But the final performance of the 

readout compared to the current one has to be demonstrated 

on the sky. 

As the U-Board platform is flexible, not only can a MKID 

readout be implemented on it, but also other types of 

backends, a high-resolution spectrometer for example. 

The prototype based on commercial off the shelf 

components has no compact form, we are developing a more 

integrated solution. This new solution is based on a complete 

custom printed circuit board, which includes the analog 

Fig. 5. The concept to combine a number of readout chains into a single 

instrument. For instruments with more than a single chain, like the A-MKID 

camera, the controlling of all chains and the data from all chains has to be 
centralized. As all the online reduction of the data is implemented on the 

heterogeneous U-Board, the data coming from the readout chains only has 

to be merged into a single data stream, which is send out to be saved. This 
reduced the requirements on the controlling computer enormously, as no 

demanding data reduction has to be done on it. 

Fig. 4. Comparison of the sensitivities of the current readout with the 
sensitivities measured with the readout based on the U-Board platform. The 

green histogram represents the measured sensitivities with the readout based 

on the U-Board platform, and the blue one represents the sensitivities 

measured with the currently used readout. 
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frontend, an UltraScale+ Kintex 15 FPGA, the DDR4-

memory associated with the FPGA and the connector for the 

Jetson module. As the analog frontend and the signal 

processing is the same on the new solution, as on the 

commercial off the shelf components prototype, we expect 

the same analog performance, with less space and power 

consumption. 
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