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 Abstract— We present results and findings from the first 

flight of the OSAS-B instrument on a stratospheric balloon. 

OSAS-B is a heterodyne receiver for the 4.7-THz emission 

of atomic oxygen which is based on a hot-electron bolometer 

mixer and a quantum-cascade laser as local oscillator.  

I. INTRODUCTION 

The Oxygen Spectrometer for Atmospheric Science on a 

Balloon (OSAS-B) has been developed for probing neutral 

atomic oxygen (OI) in Earth's mesosphere and lower 

thermosphere (MLT) from a stratospheric balloon. Atomic 

oxygen is the dominant species in the MLT region and thus 

plays an important role for the chemistry and energy balance 

[1,2]. OSAS-B is a heterodyne receiver for the ground state 

fine-structure line of OI at 4.745 THz, which cannot be 

observed from ground due to the absorption by water vapor in 

the troposphere.  

II. INSTRUMENT DESIGN AND FIRST FLIGHT IN 2022 

Figure 1(a) shows a photography of the instrument. The 

cryostat comprises the receiver front end. It contains a liquid 

helium stage for the hot-electron bolometer (HEB) as the 

heterodyne mixer and a solid nitrogen stage for the quantum-

cascade laser (QCL), which acts as the 4.7-THz local oscillator. 

A rotatable 35-mm mirror in the optics compartment collects 

the atomic-oxygen emission for different elevation angles or 

alternatively the blackbody radiation from one of the two 

calibration loads at ambient temperature and 400 K. The 

backend of the receiver comprises a digital Fourier transform 

spectrometer for data acquisition. 

The first flight of the instrument took place in September 2022 

from Esrange, Sweden. Atmospheric data were recorded for 

several hours during one day. Figure 1(b) depicts measured 

spectra for 0° (horizontal) and 60° elevation along with 

synthetic spectra as expected from atmospheric models [3, 4]. 

The spectrum for 0° elevation exhibits a pronounced wing 

structure, which is due to an interplay of emission and 

absorption from different altitudes, and reflects the radiation 

transport in the MLT region. Results show that OSAS-B allows 
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for observing the subtle line-shape details as predicted for 

different atomic-oxygen distribution models. In certain spectra, 

we found signatures of shear winds in the MLT region, which 

manifest in a relative Doppler shift of components from 

different altitudes. For the radiometric calibration, we found 

that incorporating the direct-detection effect plays a crucial role 

for obtaining a reasonable agreement between the experimental 

and the expected brightness temperatures of the OI line. We will 

present further results of the balloon flight and discuss the in-

flight performance of OSAS-B. 

 

 
Fig. 1: (a) Photography of the instrument. 1: cryostat, 2: optics compartment, 

3: backend electronics. (b) Measured and simulated spectra for 60° and 0° 
elevation Observation: 2022/09/07 9:14 UTC,  68°19´N,19°40´E, height: 32.6 

km , azimuth direction:  23° NNE. Simulated spectra based on the NRL MSISE-

00 [3] and MSIS 2.1 model [4]. 
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