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Abstract—SNS is a MATLAB-based software library written
to aid in the design and analysis of receiver architectures. It uses
electrical scattering matrices and noise wave vectors to describe
receiver architectures of arbitrary topology and complexity. It
differs from existing freely-available software mainly in that the
scattering matrices used to describe the receiver and its com-
ponents are analytic rather than numeric. This allows different
types of modeling and analysis of receivers to be performed.

Non-ideal behavior of receiver components can be parameter-
ized in their scattering matrices. SNS enables the instrument
designer to then derive analytic expressions for the signal
and noise at the receiver outputs in terms of parameterized
component imperfections, and predict their contribution to re-
ceiver systematic errors precisely. This can drive the receiver
design process by, for instance, allowing the instrument designer
to identify which component imperfections contribute most to
receiver systematic errors, and hence place firm specifications
on individual components. Using SNS to perform this analysis
is preferable to traditional Jones matrix-based analysis as it
includes internal reflections and is able to model noise: two effects
which Jones matrix analysis is unable to describe.

SNS can be used to model any receiver in which the com-
ponents can be described by scattering matrices. Of particular
interest to the sub-mm and terahertz frequency regime is the
choice between coherent and direct detection technologies. Steady
improvements in mm and sub-mm Low Noise Amplifiers (LNAs)
mean that coherent receivers with LNAs as their first active
element are becoming increasingly competitive, in terms of
sensitivity, with bolometer-based receivers at frequencies above
~ 100 GHz.

As an example of the utility of SNS, we use it to com-
pare two polarimeter architectures commonly used to perform
measurements of the polarized Cosmic Microwave Background:
differencing polarimeters, an architecture commonly used in
polarization sensitive bolometer-based polarimeters; and pseudo-
correlation polarimeters, an architecture commonly used in
coherent, LNA-based, polarimeters. We parameterize common
sources of receiver systematic errors in both architectures and
compare them through their Mueller matrices, which encode
how well the instruments measure the Stokes parameters of the
incident radiation. These analytic Mueller matrices are used
to demonstrate the different sources of systematic errors in
differencing and correlation polarimeters.

I. INTRODUCTION

Many fields of astrophysics aim to measure increasingly
faint signals. For instance, there is great interest at present in
detecting and characterizing the B-mode [1] of the polarized
Cosmic Microwave Background (CMB). The strength of this
signal is not yet determined by theory, but a strong upper limit
is 170 nK [2], a tiny fraction of the CMB total intensity signal
(~ 2.7 K).

An instrument built to detect very faint signals will almost
certainly be heavily affected by systematic errors. It is increas-
ingly important to be able to model the effects of receiver
systematic errors on the measured signal, and on the receiver
sensitivity. We want to be able predict the level of receiver
systematic errors, show their impact on the gathered data,
and make quantitative comparisons between different receiver
architectures.

Previous analytic and semi-analytic approaches to charac-
terizing systematic effects in receivers have usually employed
Jones matrices to describe receiver components and Mueller
matrices to characterize the effects of receiver systematics on
the observed Stokes parameters [3], [4]. The use of Jones ma-
trices to describe individual receiver components has several
shortcomings. Only the forward path of the signal through
the instrument is modeled — internal scattering caused by
reflections from poorly matched components is not included;
and Jones matrix modeling is unable to describe component
noise, and hence receiver sensitivity. Modeling a receiver with
a full analytic description of the outputs and sensitivity in
terms of individual component parameters allows us to identify
which parameters of each component in a receiver are most
important, and concentrate our efforts on improving them.

This paper introduces a technique and software for de-
veloping full analytic descriptions of receiver outputs and
sensitivities in terms of lab-measureable errors in individual
components. In this technique components are modeled by
electrical scattering matrices. When describing a network of
components with Jones matrices the forward-path cascaded
response can be obtained through simple matrix manipulation
and multiplication. The scattering matrix formulation does not
share this simplicity of calculation: only the case of cascaded
2-port devices is amenable to a relatively simple analytic
solution. This paper describes an algorithm for calculating
the response of arbitrarily connected networks of components.
We present software which implements this algorithm, and
apply it to two common polarimeter architectures: differencing
polarimeters, and pseudo-correlation polarimeters.

This software allows us to make robust analytic compar-
isons of receiver architectures. Errors in individual receiver
components can be parameterized and propagated into the
description of the receiver performance, e.g. the instrument
Mueller matrix. We hence have a powerful tool for guiding
the instrument design process and diagnosing the causes of
non-ideal instrument behavior.
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II. ELECTRICAL SCATTERING MATRICES

We model the behavior of individual receiver components,
and the full receiver, using electrical scattering matrices.
The electrical scattering matrix (hereafter referred to as the
scattering matrix) is a representation of a network using the
ideas of incident, reflected, and transmitted waves. It provides
a complete description of an N-port network as seen at
its N ports. A significant advantage of modeling receiver
components with scattering matrices is that noise can easily
be included in the modeling. The noise produced by a device
is modeled with a noise wave vector; see e.g. [5].

Consider the arbitrary N-port network shown in Figure la.
We denote the incident wave at port i by V;, the reflected
wave by V;~, and the noise wave produced by the network at
that port by c¢;. These quantities are related by the scattering
matrix S and noise wave vector c¢ as follows:

Vi S Siz Siv | Vit ¢
Vs S N N c
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The noise wave voltages c¢; of an N-port network are
complex time-varying random variables characterized by a
correlation matrix C

C=(c®cl)
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where the angle brackets indicate time averaging, t indicates
the conjugate transpose operation, and ® indicates the outer
product (or Kronecker product). The diagonal terms of C give
the noise power deliverable at each port in a 1 Hz bandwidth.
The off-diagonal terms are correlation products. The noise
correlation matrix C for a passive network is determined from
its scattering matrix S by [6]

C = kT(I — SST) )

where k is Boltzmann’s constant, 7" is the physical temperature
of the network, and I is the identity matrix. The noise
correlation matrix for an active network can be determined
by measurement or modeling.

III. SOLVING ARBITRARY NETWORKS

Consider the arbitrarily connected network of N-port net-
works shown in Figure 1b. We need an algorithm to calculate
the scattering matrix S and noise wave vector ¢ which de-
scribe the connected network. The algorithm derived here is
an extension of the algorithm described in [7], with added
noise wave vector manipulation. Similar algorithms are used
numerically in SUPERMIX [8].

First, let us consider the effect of connecting together ports
k and m of an N-port network described by Equation 1.
Connecting the ports means that V,:' =V, and V,, =V, .
Manipulation of rows k and m of Equation 1 then gives us

the expressions

_ Smi + Smm — Cm
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By substituting Equations 3 and 4 into each other we
can obtain expressions for V, and V) . Substituting these
expressions into Equation 1 we can obtain a new expression
for the reflected wave V™ :
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From Equation 5 we obtain replacement expressions for the
elements S;; of S and the noise waves c;:

S =S5 + A[SikSms(1 = Skm) + S Sk S
+ Simskj(l - Smk) + SimSijk’k::| (6)
c;}ew =c; + A {(SimSkk + Sik(l — Skm))cm

o+ (SitSmm + Sim(1 = Suuk)) | )
1
(1 - Skm)(l - S’rnk) - SkkSmm

Rows and columns %k and m are then removed from S and
rows k and m are removed from c to create the scattering
matrix and noise vector which describe the new (N — 2)-port
network.

where A =

A. Algorithm

To obtain the scattering matrix and noise wave vector which
describe the arbitrarily connected network shown in Figure 1b
begin by forming the scattering matrix and noise wave vector
which describe the unconnected network:

Sl 0 0 C1
0 S, C2

S=|. ,e= | . ®)
0 e SN CN
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Fig. 1. (a) An arbitrary N-port network. The total signal at each port p;

consists of an incident signal Vf, a reflected signal V™, and a noise signal
c;. The reflected signal V™ is a weighted sum of the incident signal at port
4 and transmitted signals from the other ports of the network, the coefficients
of the sum being the elements of the network scattering matrix S. The noise
signals are given by the noise wave vector c. (b) An arbitrarily connected
network of N-port devices.

We then successively form each connection in the network.
For each connection, find the rows and columns k and m of
S and c in Equation 8 which correspond to the ports being
connected. Use the replacement formulae given by Equations 6
and 7 to adjust the S matrix and c vector. Remove rows
and columns £ and m from S, and rows k and m from c.
Repeat for each remaining connection until we are left with
the scattering matrix S and noise vector ¢ which describe the
fully connected network.

IV. SOFTWARE IMPLEMENTATION

We have derived an algorithm in §III-A for finding the
scattering matrix and noise wave vector which describe an
arbitrarily connected network. We need to be able to apply it
to arbitrary receivers with parameterized scattering matrices
describing the receiver components and obtain analytic ex-
pressions for the outputs and noise in terms of the component
parameters.

The algorithm must be implemented in a programming
language with the ability to manipulate symbolic algebraic
expressions. This programming language must also support

N-port Node N-port
ports
ports
1
[1]
2
2
3 |
3
4
S,c,N=3 S,c,N=4

Node

Fig. 2. Schematic showing the nature of node and N-port objects and how
they connect to each other in the software.

pointers (or equivalent data structure) to allow the creation
of a navigateable network. We implemented the algorithm in
MATLAB', which has a powerful and well developed sym-
bolic algebra toolbox. While it does not have a native pointer
data type (as of version R2008b), a third party open-source
pointer library® adds this capability. The software package we
developed to perform this modeling is called SNS?.

A. Representing a Network

A network is represented by nodes and N-port objects, as
shown in Figure 2. They are both pointer objects. Each N-port
object contains an array of references to the nodes connected
to each of its N ports, a scattering matrix S, a noise wave
vector ¢, and a variable N, the number of ports of the object.

Each node object contains two pointers; these refer to the
N-port objects the node connects to in the “forward” and
“backward” directions, and which port number the connection
is made to (g, and Ny, respectively). Note that the forward
and backward directions are completely arbitrary; they are
merely a helpful concept when trying to visualize the operation
of the algorithms which act on the network.

The network is constructed by creating all the node and
N-port objects using functions called makeNode () and
makeNport (), assigning scattering matrices and noise wave
vectors to the NN-port objects, and connecting each node to
its forward and backward N-port objects. A connectNode
function hides the complexity of assigning references to the
appropriate array locations and assigning the appropriate port
numbers to variables.

Nodes are classified into four types: input, output, central,
and terminated. We want to calculate the performance of a
network in terms of the response seen at the outputs due to
signals presented at the inputs. The central and terminated
nodes are removed by the network-solving program.

Once all the objects have been created, assigned matrices
and vectors, and connected, it suffices to describe the network
by the four arrays of nodes. Due to the fully connected nature
of the network representation it is possible to start at any node
and navigate to any other node by following the appropriate
links between objects.

Thttp://www.mathworks.com/
Zhttp://code.google.com/p/pointer/
3Download at http://www.astro.caltech.edu/~0gk/SNS/
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B. Solving a Network

The network-solving program accepts four arrays of nodes:
the inputs, outputs, central nodes, and terminated nodes. It
returns the scattering matrix and noise wave vector for the
connected network, where the central and terminated nodes
have been removed through application of the algorithm
described in §IIT-A

The first step the software performs is to remove the
terminated nodes, if there are any. The software assumes
that the terminations are perfectly matched and at a common
physical temperature. It modifies the object scattering matrices
to remove the terminated nodes, and adds the noise terms
produced by the terminated nodes to the noise wave vectors.

The network sans terminated nodes is then passed to a
recursive network shrinking program. This program begins
with the first central node and applies the algorithm given by
Equations 6 and 7 to a sub-network consisting of the two N-
port objects connected to that particular node. A new N-port
object is created and assigned the resulting scattering matrix
and noise wave vector. All the nodes which were connected to
the now-defunct N-port objects are reconnected to this new N-
port object at the appropriate ports. A new network is formed
by excluding the central node just considered and the program
is recursively called on this new network. This continues until
there are no more central nodes, at which point the scattering
matrix and noise wave vector of the single remaining N-port
object are returned.

Applying the algorithm in this fashion, rather than to the
entire network at once, means that the size of the matrix S
in Equation 8 is kept small, speeding up computation. This is
not an optimum solution to network shrinking, but we have
found it to be significantly faster than applying the algorithm
to the full unconnected network for networks of more than a
few N-port objects.

The description given above glosses over the significant
complexity in keeping track of which nodes should be con-
nected where, and certain configurations of nodes and N-port
objects which would cause the default implementation of the
algorithm to fail. The majority of the code is dedicated to
performing these functions; only a small fraction of the code
actually carries out the calculations described by the algorithm.

C. Example Code Listing

To illustrate the operation of the program consider the
network shown in Figure 3. It is represented in software by
connected lists of nodes and N-port objects, as shown in the
following code listing:

% Matrices Sl1, S2, S3, S4, S5 and vectors cl, c2, c3, c4, c5 assumed to
% have been previously defined using symbolic algebra library.

% Make the N-port objects

P1 = makeNport (); P2 = makeNport ();
P4 = makeNport (); P5 = makeNport ();
% Assign scattering matrices and noise vectors

P1.S = S1; P2.S = S2; P3.S = S3; P4.S = S4; P5.S = S5;
Pl.c = cl; P2.c = c2; P3.c = c3; Pd.c = c4; P5.c = c5;
% Make the nodes which connect the N-port objects

Inl = makeNode(); In2 = makeNode(); Onl = makeNode ();
On2 = makeNode(); Tnl makeNode () ; Cnl = makeNode () ;
Cn2 = makeNode(); Cn3 makeNode () ;
Cn4 = makeNode(); Cn5 = makeNode () ;
% Connect nodes to N-ports
connectNode (Inl, [1,1,P1,1);
connectNode (Cn1,P1,2,P3,1);
connectNode (Cn3,P3,2,P2,1);
connectNode (Cn5,P3,3,P5,1) ;
connectNode (0nl,P5,2, [1,1);
% Build arrays of nodes
inputs = {Inl In2}; outputs = {Onl On2};

P3 = makeNport () ;

connectNode (In2, [1,1,P1,4);
connectNode (Cn2,P1,3,P4,1);
connectNode (Cn4,P4,2,P2,4);
connectNode (Tnl,P2,3,[],1);
connectNode (On2,P2,2, [],1);

In.

In. Cn: Cn. T
0—43—o—m

Fig. 3. An arbitrary network of N-port devices to illustrate the software.
Nodes are indicated by open circles, N-port devices by rectangles. N-port
device ¢ is described by scattering matrix S; and noise wave vector c;. Input
nodes to the network are In;, central nodes Cn;, terminated nodes Tn;, and
output nodes On;.

cnodes = {Cnl Cn2 Cn3 Cn4 Cn5}; tnodes = {Tnl};
% Pass arrays of nodes to network calculator
[S, c] = getScatteringRecursive (inputs,outputs,cnodes,tnodes);

The getScatteringRecursive program performs the
actions described in §IV-B, and returns the scattering matrix S
and noise wave vector c for the resulting 4-port object. Nodes
Iny, Iny, Ony, and On, are connected sequentially to ports 1
to 4 of this object.

V. POLARIMETRY

The example presented in the coming section, §VI, com-
pares two receiver architectures commonly used to measure
linear polarization at radio to sub-mm wavelengths. This sec-
tion provides necessary background information by sketching
a brief summary of polarization. It shows how a receiver may
be described by a Mueller matrix, and shows how to derive a
receiver Mueller matrix from the scattering matrix produced
by the software described in §IV.

A. Brief Summary of Polarization

An electromagnetic signal is said to be polarized if there is
some lasting amplitude or phase relation between its orthog-
onal modes. The coherency vector [9] captures this relation:

.
=l g,mE |

B, (1) E= (1)
=(E®E")

Here E is the complex vector of the orthogonal modes E.(t)
and E,(t) of the signal, (...) indicates time averaging, and ®
indicates the outer product.

If the signal E is acted on by an object described by a Jones
matrix J, i.e. E,,; = JE, then the new coherency vector is
given by

et =(J®J%)e )

The polarization state of a signal is usually described by
the Stokes parameters, I, @, U, and V. I describes the total
intensity of the signal, () and U describe the linear polarization
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state, and V describes the circular polarization state. The
Stokes vector e is obtained from the coherency vector e by

I
e’ = g = Te (10)
v
1 0 0 1
1 0 0 -1
where T = 0 1 1 0 (11)
_0 —7 ¢ 0

We see that T is a coordinate transformation of the coherency
vector to the abstract Stokes frame.

The Stokes parameters are a convenient and powerful way
of the describing the state of polarization of an electromagnetic
signal. From Equation 10 we have:

=(|E=(0)) + (1B, (t)
:<|E OF) = (I1By(1)
=2(R{E.(t)E,(1)})
=(EL() Ey (1)) + (E;
4 2<J{E () E,(1)})
— i[(Ex(t)Ey (1)) — (EL (1) Ey(1))]
a) Mueller Calculus: Suppose that a signal defined by
the complex electric field vector E and coherency vector e is
modified by an object described by the Jones matrix J. From

Equations 9 and 10 we see that the output signal E,,; = JE
will be described by the Stokes vector

%)
%)
(1) Ey (1))

12)

el =TI J)T e’

=Me*®

The matrix M = T(J®J*)T~! is called the Mueller matrix.
It represents the action of the object characterized by Jones
matrix J in the Stokes vector space.

Mueller calculus is a matrix method for manipulating Stokes
vectors. We denote the Mueller matrix elements as

Mir Mg My My
M = |Mar Mg Mqgu Mgy
Myr Myg Myy Myy
My; Myg Myy Myy

Mueller matrices are a convenient means of describing the
action of an astronomical polarimeter. Of particular interest are
the Mgr and My parameters, which describe the leakage of
the total intensity I into the measured linear polarization vector
components. Much of the radio and mm/sub-mm spectrum is
only slightly linearly polarized, hence non-zero values of Mg
and My can imply serious contamination of the measured
linear polarization vector by the total intensity signal.

B. Deriving Receiver Mueller Matrix

Say we have calculated the scattering matrix which de-
scribes the behavior of a receiver. For polarimeters, a natural
way of expressing the receiver’s performance is with a Mueller
matrix. We need to translate the receiver scattering matrix into

I

[S] »F—D

1

N p——o

Fig. 4. A arbitrary receiver, where orthogonal linear polarizations E (t) and
E,(¢) are presented at inputs 1 and 2 respectively. D is the output at port
m. The receiver is described by scattering matrix S.

a Mueller matrix which describes the action of the receiver on
the Stokes vector of the incident electromagnetic signal.

Consider the arbitrary receiver shown in Figure 4. Orthog-
onal linear polarizations E,(t) and E,(t), representing either
signals in transmission lines, orthogonal modes in waveguide,
or orthogonal modes in free-space, are connected to ports
1 and 2 of the receiver respectively. Receiver output D
is connected to port m. The receiver is described by the
scattering matrix S.

The output F,,(t) seen at port m is given by (assuming that
the connections to ports 3 to N are reflectionless):

En(t) =Sm1EL(t) + SmaEy(t)

The power contained in the signal E,,(t) is then measured.
At radio wavelengths this is often achieved through the use of
a square-law detector diode. At mm and sub-mm wavelengths

a bolometer might be used. The measured power Pp is given
by:

PD :a<Em(t)Em (t)*>

« <‘El(t)| >|Sm1|2 <|Ey(t)|2>|sm2|2
+ (B () B (1)) Sm1 S
+ (B2 (OB, (6) S Sma] (13)

where (...) indicates time averaging, « is a proportionality
constant dependent on the power detection method, and we
assume that the instrument scattering matrix parameters are
constant during the average time period. Now let

Pp =Mprl + MpqgQ + MpyU + MpyV
=Mpi{|E.(t)]* + | By, (t)[*)

+ Mpo(|E(t)]* = [Ey (1))

+ Mpu(E.(t)Ey(t) + EL(t)Ey(t))

— iMpy (E:()E, (1) — EL(E, (1) (14)

where we have used the definition of the Stokes parameters
given in Equation 12.

By comparing Equations 13 and 14 we can obtain the
contribution of each Stokes parameter to the power measured
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at output D:
Mpr =5 {|Sml* + |Smal’}
Mpg =5 {|Sm[* = [Smal’}
Mpy :%{Smls’:rﬂ + Sy Sma}

Mpy == {Sm1Sia = S Sma} (15)

We can derive the receiver Mueller matrix by applying this
technique to all the outputs of the receiver.

VI. POLARIMETER ARCHITECTURE COMPARISON

Two basic types of architectures are used to measure the po-
larization of an electromagnetic signal: differencing polarime-
ters, an architecture commonly used in polarization sensitive
bolometer-based polarimeters [10]; and pseudo-correlation (or
correlation) polarimeters, an architecture commonly used in
coherent, LNA or mixer based, polarimeters such as QUIET
[11].

Differencing polarimeters measure the difference in power
between orthogonal linear modes of the electromagnetic sig-
nal; see the definition of @) in Equation 12 for inspira-
tion. Correlation, or pseudo-correlation, architectures measure
the polarization state by measuring the correlation between
orthogonal modes. Correlation polarimeters are required to
preserve the phase of the incident signal. They are hence only
feasible if coherent (i.e. phase-preserving) amplifiers or mixers
are available.

The choice of which architecture to use for a particular
experiment is often dominated by sensitivity considerations. At
low frequencies (<~ 60 GHz) the availability of low-noise co-
herent amplifiers has favored correlation architectures [12]. At
higher frequencies, the fundamental quantum limits that ampli-
fier noise is subject to has favored direct detection technologies
such as bolometers, and hence differencing polarimeter ar-
chitectures, for continuum polarimetry experiments. However,
continuing improvement in coherent amplifier technology at
high frequencies has pushed their performance closer to the
quantum limit, e.g. [13]. As coherent amplifier technology
improves, sensitivity may no longer be the deciding factor
between technologies, and hence architectures.

Differencing and correlation architectures measure the po-
larization information of the incident signal in very different
ways, and hence suffer from different sources of systematic
error. A careful analysis of the fundamental strengths and
weaknesses of each architecture is needed. SNS is well suited
to perform this analysis. In this section we use SNS to
derive receiver Mueller matrices for examples of these two
polarimeter architectures. This analysis highlights the different
sources of systematic error in these architectures.

A. Differencing Polarimeters

An example of a differencing polarimeter architecture is
shown in Figure 5 (right). The powers in orthogonal linear
modes Dy and D, are detected and differenced to obtain one
of the linear polarization parameters. Differencing polarime-
ters have a much simpler architecture than pseudo-correlation

Ey Ex

LT

4 1
Circularizer

circ

Ey Ex

LI

4 Faraday!
Rotator
3 [Sfr] 2

D4® °Ds

Fig. 5. Examples of two commonly used polarimeter architectures. (left) A
pseudo-correlation polarimeter. (right) A differencing polarimeter. Orthogonal
waveguide modes F, and E, are circularized or rotated, and extracted from
waveguide by an orthomode transducer (OMT). In the pseudo-correlation
architecture the signals are further processed. The powers in signals D1 to
Dy are detected and processed to obtain the Stokes parameters, as explained
in the text.

polarimeters. However, they measure only a single linear
Stokes parameter; a duplicate receiver oriented at 45° to the
first is needed to measure the second linear Stokes parameter.

B. Pseudo-correlation Polarimeters

An example of a pseudo-correlation polarimeter architecture
is shown in Figure 5 (left). The Stokes parameters of linear
polarization in a circular basis are given by:

Ei(1) =%[Ex<t> B, (1)
Eo(t) =L [B,() + iy (1))

V2
Q =2(R{E1(t) E;(1)})

U=—-2(S{EQ®)E:(1)}) (16)

Pseudo-correlation polarimeters measure the linear Stokes
vector by correlating circular polarization signals F; and E,
with (D3 and D,) and without (D; and D5) a 90° phase shift.
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The powers in signals Dy to D, are detected and combined
to obtain the linear Stokes parameters.

While the architecture of a pseudo-correlation polarimeter is
more complex than that of a differencing polarimeter, it does
provide some significant advantages. For instance, both linear
polarization parameters can be measured with a single optical
assembly, providing twice the information for the same focal
plane area occupied.

C. Parameterized Scattering Matrices

Some of the components in the receivers shown in Figure 5
have parameterized scattering matrices. While it is possible to
describe every component in a receiver with a suitable parame-
terized scattering matrix, the resulting analytic expressions for
the outputs soon become too complicated to be useful when
written down.

In this analysis the components are assumed to be perfectly
matched, i.e. the diagonal elements of the parameterized
scattering matrices are zero.

1) Circularizer: The circular phase shifter translates or-
thogonal linear polarizations into orthogonal circular polar-
izations. It introduces a 90° phase shift into one orthogonal
linear mode, and is oriented at 45° to the OMT linear axis.

A possible parameterization of the circularizer’s scattering
matrix as shown in Figure 5 is:

0 1 1 0
S L. |1 0 0 —etl(F+0e)
are = /2 |1 0 0 ei(F+0c)
0 —ei(3+0e)  (i(F+0c) 0

Here Lz is the insertion loss of the circularizer, and 0, is the
error in the 90° phase shift. The circularizer is assumed to be
otherwise perfect.

2) Faraday Rotator: The Faraday rotator shown in the
differencing polarimeter in Figure 5 is a component sometimes
used in PSBs [14]. It modulates the measured polarization
signal by introducing a variable rotation to the plane of linear
polarization of the incident signal. A similar effect can be
achieved with a rotating birefringent half-waveplate, or a wire

grid.
The scattering matrix for the rotator considered here is:
0 cos(bps)  sin(fps) 0
S, — cos(fps) 0 0 —sin(6ps)
Ir = | sin(6,,) 0 0 cos(0s)
0 —sin(fps) cos(fps) 0

Here 20, is the time-dependent linear plane rotation intro-
duced by the Faraday rotator.

3) OMT: The OMT extracts orthogonal linear modes from
the waveguide. The scattering matrix parameterization consid-
ered here is:

0 D, d. 0
b, 0 0 4,
Somr=1,"" 0o o b,
0 d, D, 0

Here D, and D, measure the insertion loss for each orthogo-
nal mode, while d, and d,, measure the leakage of one mode

into the other. From conservation of energy considerations in
a passive component we have the constraints |D,| = |D,| =
|D|, |dzy| = |dyz| = |d|, and |D|* + |d|*> = L2,,,, where
L2, is the insertion loss of the OMT. The parameters may
have arbitrary phase.

4) LNAs and Phase Switch: The scattering matrices for the
LNAs in the pseudo-correlation polarimeter are given by:

0 0
St.r= |:GL,R 0]

Here G; and G are the complex voltage gains of the left
and right circular polarization amplifiers respectively.

The phase switch in the pseudo-correlation polarimeter
modulates the phase of one of the signal arms relative to the
other. Its scattering matrix is given by:

0 €'0ps
SPS = |:ei9ps 0 :|

Here 0, is the time-dependent phase shift introduced by the
phase switch, usually shifting between 0° and 180°.

D. Polarimeter Mueller Matrix Elements

We now build a connected model of each polarimeter in
SNS using the matrix parameterizations given in §VI-C. We
use Equation 15 to obtain expressions for the powers measured
at each receiver output in terms of the incident signal Stokes
parameters.

For the ideal pseudo-correlation polarimeter, i.e. where all
the components are perfect, the outputs are:

1.1
Pp == — =
py =51 =3U
1.1
1. 1
Pp. ==1 — =
Dy =51 = 5@
Pp, =21+ 10 (17)
Pa—9o% Ty

Here we have assumed that 6,; = 0 and o = 1. To measure
the Stokes parameters we take @), = Pp, — Pp,, Uy, =
Pp, — Pp,, and I,,, = (Pp, + Pp, + Pp, + Pp,).

For the ideal differencing polarimeter the outputs are:

1 1 1
Pp, ==1+ = cos(20,5)Q — = sin(26,,)U

2 2 2
1 1 1
Pp, =515 c0s(20,5)Q + 5 sin(20,s)U (18)

Which linear Stokes parameter we measure depends on the
plane rotation introduced by the Faraday rotator, and is given
by L,, = Pp, — Pp, = c0s(20,,)Q — sin(20,5)U. The
measured total intensity is I,,, = Pp, + Pp,.

The Mueller matrix parameters of particular interest in CMB
polarization studies are: M;;, Mgq, and My, the diagonal
elements of the Mueller matrix; Mg; and My, the leakage
of the total intensity signal into the (generally) small linear
polarization signal; and Mgy and My g, which measure the
rotation of the linear polarization vector by the receiver.
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These Mueller matrix parameters for the pseudo-correlation
polarimeter are:

LzLth
2
Mgo =L2|GLGR]| [\D|2 cos(03) + |d|? 003(94)}

My = |:‘GL|2 + |GR|2:|

Myv =L2|G1LGxr| [cos(ec){\m?cos(eg) — |d|? cos(64)}
— sin(6.)|Dd|{sin(61) + Sin(eg)}}

Mor =L2|G1Gr||Dd| [cos(eg) + Cos(91)}

My =L2|GLGr||Dd| [sin(el) — sin(Hg)}

Mau =L2|G1Grl cos(8.){| DI sin(8s) — |df sin(6.)}
+ sin(6.)| Ddl{cos(6) — cos(@l)}}

Mug = — L2|GLGx| {\D|2 sin(6s) + |d|? sin(94)} (19)

where 0, :GDy — Gdzy — (0@L — 9@R + 9,,5)
02 =0p, — ba,, + (0c, — Ocp + Ops)
03 =0p, —Op, + (0, — bcp + 6ps)
04 =04, — 0a,, + (0c, —Ocy + 0ps)

Here X = |X|e?x. We have implicitly assumed that the
responses of all the power detectors are equal and stable.

To keep the comparison between the architectures reason-
able, we need to include varying power detection sensitivity in
the differencing polarimeter. Let the power detection propor-
tionality constants (see Equation 13) be 1 and s for outputs
1 and 2 respectively. We also need to decide on the rotation
angle of the Faraday rotator to specify which linear Stokes
parameter we actually measure. Let 0,, = £45° (i.e. Stokes
U). We then obtain the Mueller matrix parameters:

2

Mi; :L"2’"t [al + 012}
szﬂg%qm+mﬂmfwwywmwMWM
[al cos(fp, — 04,,) — azcos(dp, — ba,, )]

Mug :% {QZ _ al} {\D|2 - |d|2} — sin(20,.)|Dd]|

{al cos(0p, — 04,,) — azcos(fp, — Oa,, )] (20)

1) Discussion: One of the greatest sources of systematic
error in polarimeters is leakage of the total intensity signal into
the measured linear polarization amplitude, P = /Q? + U2.
The fractional contribution to P from total intensity leakage,
AP; = Mpr/Mjy, is given by:

N \/ Mg+ Mg,
= My

Assume that we have two differencing polarimeters oriented
such that they measure ) and U respectively, identical ex-
cept for their values of a. The “@Q” polarimeter has values

0.5 T T T
— — — Differencing polarimeter
0451\ N Correlation polarimeter: IdI? = ~30dB i
oal N |77 Correlation polarimeter: IdI? = ~40dB |
\\ *7t" Correlation polarimeter: 1d? = -50dB
0.351 \ 4
\
\
0.3} . 4
— \\ a
7 -
% 0.25 N .
sl N 7
0.2 \ y 4
AN 7/
\ e
0.15f \ . 4 4
N s
\ ’
0.1 N z ~
\ 1
0.05F \ 4 ~
S P PP, N e mmmm -
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A

Fig. 6. Comparison of the effect of imbalance on the fractional total intensity
to polarization leakage for pseudo-correlation and differencing polarimeter
architectures. For the pseudo-correlation architecture, A = A|G|2. For the
differencing architecture A = Acv. |d|? is the OMT cross polarization.

a1, oo, while the “U” polarimeter has a3, ay. For the pseudo-
correlation and differencing polarimeters we then have:

2V2|GLGR|
APf =————=—=_|d|\/(1 — |d|?)(1 + cos(6; + 6
I |GL|2+|GR‘2| |\/( ‘ | )( ( 1 2))
APf =2 V(a1 = a2)® + (a3 — a)?

a1+ o +az + ay
As a simplification, assume that Aa = (o —ag)/as = (az—
ay)/ay, and let A|G|? = %%‘?RP Take the worst-case
phase scenario, where cos(6; + 62) = 1. We now have:

1_ ‘d|27\/1+A‘G‘2

APf =4 21
7 =4/d] 21 AIGP @D
¢ V2Aa

AP 24+ Aa (22)

Equations 21 and 22 are plotted in Figure 6. Several
attributes are noteworthy: APy is independent of the OMT
cross polarization |d|? for the differencing polarimeter, but
is heavily dependent on the power sensitivity imbalance Aq;
APy is almost independent of gain imbalance A|G|? for the
pseudo-correlation polarimeter, but is dependent on the OMT
cross polarization.

Figure 6 clearly illustrates the difference between the po-
larimeter architectures in terms of total intensity to polarization
leakage. Correlation polarimeters are very insensitive to what
is generally the most unstable parameter in a coherent receiver:
fluctuating LNA gain. They are moderately sensitive to OMT
cross polarization |d|?. The comparatively high sensitivity of
differencing polarimeters to power detection imbalance can be
reduced if A« is stable and well-known; the data can then be
corrected and the leakage of I into P reduced. Phase switching
can also be used to reduce this leakage.

E. Pseudo-Correlation Polarimeter Noise Temperature

A very powerful benefit of using scattering matrices to
model receivers is the ability to perform noise analysis. We
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specify parameterized noise wave vectors for the pre-LNA
components and ignore any noise produced by the components
“down stream” of the LNAs, as their contribution will be
negligible if the LNA gain is high.

If the noise wave vector of the pseudo-correlation polarime-
ter is given by c, then the noise power measured at the output
D; in a 1 Hz bandwidth is given by P; = a(cjc;*-), where ¢;
is the noise wave vector element corresponding to output D,.

Suppose that component k of M total components has N
ports, and is specified by the scattering matrix S¥ and the
noise wave vector c”. ¢;j is given by:

N

Z bfcf

i=1

E c , where c

Noise waves from different devices are not correlated:
ck(e™)*y = 0 for k # m. So, P, is given by:
g g y

(3

_aZPk
where Pl = ZZ(C’C (bF @ (bk)T))

Here CF is the noise correlation matrix for component k,
is the matrix dot product, b* is the vector [b¥ ...0% |7, ® is
the outer product, and T is the hermitian conjugate. The > >
indicates a sum over all the matrix elements.

The noise correlation matrices for the passive pre-LNA
components are obtained using Equation 2. To get the noise
correlation matrices for the LNAs we make two simplifications
to the HEMT noise correlation matrix model in [5]: first,
the off-diagonal terms of an LNA noise correlation matrix
({c1¢5) and (cice)) are much smaller than the diagonal terms
so we take them to be zero. Second: {|ca|?) =~ |Sa1|*(Je1|?) ~
k|S21 |2T N, wWhere Ty is the amplifier noise temperature and k
is Boltzmann’s constant.

Receiver noise temperature is referenced to the input. We
consider the receiver temperature 7; at output D; to be
the temperature of a thermal source seen equally at each
input which produces the same total output noise power in
a noiseless receiver:

—Q(Z'“\Swl)

T :7%’?21 L
> IS

i1

(23)

Here Ny, is the number of inputs to the receiver, and S is the
receiver scattering matrix.

Applying this technique to the pseudo-correlation polarime-
ter we derive the receiver temperatures for the outputs D; to

1.2 1.2 _/
1.1 11
04 02 0 02 04 Z60 -50 —40 -30
AlGI2 IdI? [dB]
13 13
12 12
1.1 11
0 5 10 0 5 10
0 4 [degl] 0 Ldegl]
13 13
12 12
1.1 11
0 5 10 0 5 10
0 [deg] 6, [ded]

Fig. 7. Plots of T1 /T against various parameters. We see that the receiver
is most sensitive to the cross polarization, |d|2, and is negligibly sensitive to
the other parameters. We assume Ty = Tp = 15 K. See text for details.

Dy:
TQ:TC+%[E§F_1]+?§[EiF}
T4:Tc+f§[EfH_1}+IL};{EfH} @4

where T, T{L; 1 |

—\GL\2+\G|

(‘GL‘2+ ‘G |) omt
F =2|G1Gr||Dd| [005(91) + cos(eb)}

=2|GGR||Dd| {Sin(ﬁl) — sin(ﬁg)]

Here we have assumed that the amplifiers have noise temper-
ature 7'y, and that the circularizer and OMT are at a physical
temperature of 7},. 61 and 6, are given in Equation 19.

1) Discussion: Which parameters in the multiparameter
expression for 7% in Equation 24 have the greatest impact on
the receiver temperature? The most obvious are L? and L2 ,,
the insertion losses of the circularizer and OMT respectively.
Setting those aside, how do the other parameters affect the
receiver temperature?

The minimum value that 77 can have is T . Our sensitivity
impact metric is then T} /Ty > 1. We fix Lf = —0.1 dB and

L2, = —0.2 dB, and set |Gg| = 1, = 1+ A|G|?,
0c, =0, and 0p, = 0 (only relative phases matter here). This
leaves us with six parameters: |d|?, A|G|?, . Op,, Od
and 04, .

We generate random sets of physically realistic values for
these parameters, and evaluate the metric 77 /Ty for each set.

We plot Ty /T against each parameter under consideration

xy?
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in Figure 7. It is immediately clear that the most important
parameter in this set is |d|?. Discarding the least important
parameters we now have:

1 T, + Ty
Ty =— P - T,
‘Lire,, - 20dyIZ,, —ldE "
T,(1—L2L2%,,)+ TN .
P L%Limf since |d|* < L2,  (25)

This simplified expression for 77 is exactly what we would
derive using a conventional noise temperature analysis, indi-
cating that the software has calculated the noise temperature
correctly.

VII. CONCLUSIONS

We have presented SNS, a MATLAB-based software library
written to aid in the design and analysis of receiver archi-
tectures. It uses electrical scattering matrices and noise wave
vectors to describe receiver architectures of arbitrary topology
and complexity.

We use SNS to compare two polarimeter architectures com-
monly used to perform measurements of the polarized CMB:
differencing polarimeters, an architecture commonly used in
PSB-based polarimeters; and pseudo-correlation polarimeters,
an architecture commonly used in coherent polarimeters. This
analysis highlights the differing sources of systematic error in
these architectures: I to P leakage in pseudo-correlation po-
larimeters is almost immune to gain imbalance, but sensitive to
OMT cross polarization; while I to P leakage in differencing
polarimeters is immune to OMT cross polarization, but very
sensitive to power detection imbalance.

We show how SNS can be used to calculate analytical
expressions for the receiver noise temperature of arbitrary
receivers. Analytic expressions for the receiver temperature of
a pseudo-correlation polarimeter are derived, and are found to
be consistent with those obtained from conventional receiver
temperature calculations.
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