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Abstract— We present calculations and measurements on a
passive submillimetre wave spectroscopic sounder to gather
data on the thermal structure, dynamics and composition of the
upper atmosphere of a planet, e.g. the stratosphere of Jupiter,
or the entire thickness of the atmosphere of Mars. The
instrument will be capable of measuring wind speeds,
temperature, pressure, and key constituent concentrations in the
stratosphere of the target planet.

This instrument consists of a Schottky diode based front end
and a digital back-end spectrometer. It differs from previous
space-based spectrometers in its combination of wide tunability
(520-590 GHz), and rapid frequency switching between widely
spaced lines within that range. This will enable near
simultaneous observation of multiple lines, which is critical to
the reconstruction of atmospheric pressure and density versus
altitude profiles. At the same time frequency accuracy must be
high to enable wind speeds to be determined directly by
measurement of the line’s Doppler shift.

I. INTRODUCTION

Recently, NASA and ESA have turned their attention to an
Outer Planet Flagship Mission (OPFM) to the Jupiter system,
focusing on Ganymede, Europa and other Galilean moons, as
well as Jupiter, and to the Saturn system focusing on the
Titan. Both studies call for inclusion of a submillimeter
spectrometer. The Jupiter measurements will greatly expand
on those from the Juno mission currently being built, the
prime target being Jupiter’s stratosphere. Titan measurements
would concentrate on the upper atmosphere dynamics of
hydrocarbon chemistry. Another possible target for a
submillimetre wave spectrometer is Mars, whose atmosphere
is thin enough to be observed all the way to the surface.

Submillimetre spectral observations of these planets’
atmospheres will allow multiple physical properties of the
atmosphere to be measured as a function of altitude and
latitude/longitude:

Concentration of various critical gases of interest

Pressure

Temperature

Wind Velocity

Fig. 1a shows a planet limb sounding observation, where
the radiometer observes the atmosphere against the cold dark
background of space. Fig. 1b shows a simulated line intensity
profile for HCN (531.7 GHz) at two different altitudes over
Titan and several mixing ratios (ratio of HCN to all gases).
The 100 km lines are dominated by pressure broadening, the
500 km line is entirely Doppler broadened. In between, the
line shape is a combination known as the Voigt profile. By

examining these line profiles as a function of hy, the
minimum limb observation altitude, a model of the
concentration/temperature/pressure  profiles can  be
determined.
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Fig. 1. (a) Limb sounding spectrometer configuration frequency. (b)
A few spectral line profiles for HCN at Titan.

In order to retrieve separate the signal pressure profile
from the concentration profile, it is necessary to observe
more than one line of the relevant gas species. Because of the
rapid movement of the spacecraft at Mars or Titan, the
spectrometer needs to switch rapidly from one to the other
while integrating the signal to produce near simultaneous
measurements before the spacecraft motion degrades the
measurement. Wind velocity determination uses the Doppler
effect to determine the relative radial velocity between the
spacecraft and the spot in the atmosphere being observed.

This paper examines the affect of system additive noise,
phase noise, and line-to-line frequency switching on the
quality of the measurement of the line profile and the line
frequency accuracy.



II. SYSTEM ADDITIVE NOISE

The system under consideration is depicted in the block
diagram of Fig. 2. The signal from the planet enters at the
left, and is mixed in the mixer with a locally generated LO
signal. The LO is derived from the ultra-stable oscillator
(USO) primary frequency reference, and generated by a
synthesizer at a frequency range around 30 GHz. From the
synthesizer, the signal frequency is multiplied by the active
millimetre wave/submillimeter wave chain by a factor of 18
to the signal frequency. The mixer IF output is amplified and
converted to the range of 0-125 MHz, digitized, and analysed
by an FFT-type discrete Fourier transform (DFT) spectrum
analyser, followed by additional signal processing to be
described later.
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Fig. 2. Block diagram of spectrometer.
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White noise from both the background of the observation
and the mixer’s thermal and shot noise enters the system,
where it adds to the desired signal, resulting in measurement
uncertainty. This additive noise affects both the frequency
estimate and the amplitude profile determination of the
spectral line.

A. Effect of system noise on frequency estimate

The effect of Gaussian additive noise on the frequency
estimate of a single line (less than a channel bandwidth wide)
has been analyzed by [1, 2] for the idealized case of an
infinitely narrow sinusoidal CW line. The minimum possible
frequency uncertainty, known as the Cramers-Rao lower
bound (CRLB) [3] on the variance is given as:

. 60°
var{wl}zmh (1)

A is the amplitude estimate, o is the Gaussian noise
voltage variance, and N the total number of points in the
measurement. In the nomenclature of [1], the frequencies are
normalized to the inter-sample time, 7:

@ = 24T

To express the frequency uncertainty in terms of the
system temperature, Ty, some identities must be used. The
total noise power o, is the product of the total noise power
density, kT,,, times the Nyquist bandwidth, 1/(27), i.e.

kT .

2 sys
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As for most spectrometers N*>>1 so the CRLB frequency
variance can be expressed as

{f}_ 3kTsys
L Y o @
For a DFT spectrometer, the channel bandwidth is the
inverse of the total measurement time for each spectrum, B¢
=1/(NT). In the measurement mode anticipated for the
planetary spectrometer, successive measurements will have
their power spectral densities summed [4]. Assuming these
measurements are not correlated, frequency variance will be
reduced the number of spectra averaged together, Ns. With
this in mind, define the total integration time as:

7) =NgNT =—= C))

Finally the frequency uncertainty (deviation) is expressed
as the square root of the variance,

3kT, B¢
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where the last expression expresses the deviation in terms
of the channel signal to noise ratio defined as the ratio of the

line power (A%/2) to the channel noise power:

22
SNR = A 6)
2kTsysBC

Usually the only variable than can be manipulated for any
particular measurement is the integration time, the others

being set by practical considerations.

B. Effect of system noise on line profile estimate

The total power in a “limited-bandwidth” channel is given
by Rice (Dover, etc.), who derived it in the context of a band-
limited square law device:

e
P=0¢+ = ()
which is the sum of the CW power and the channel noise
power. The channel noise power, oc’, is the total noise power
¢* divided by the number of frequency channels:
2 _ O ’
Oc = N/2 = kTsysBC P

using the results from the previous section.

The variance of P [5, eq 4-16] is, again taking into account
averaging over Ng records,

2
var{P}= ;—C (Gé +A? ) . (t))
s

Note that if the channel contains pure noise, A =0 and the
deviation for a single measurement (Ng=1) is 100% of the
power, i.e. oc’. On the other hand, if A* >> o7, the deviation



is much higher, o¢ A, since the power is the square of the sum
of the line voltage and noise voltage. Expressing the channel
power in terms of Ty, gives, for the power estimate deviation,

kT, B A
AP = dev({P} = [var{P} = \/;VLC(kTmBC + A2) )
s

For A ~0, the “signal” as well as the noise has a white

spectrum, and it is sensible to define the power estimate

deviation in terms of noise equivalent temperature difference:

AP = kAT, B

Putting this into (6) with A =0, and using (2) to replace Ny

results in the radiometer equation:

AT, =

eq —
N
Conversely, For A * >>¢¢” it is more sensible to express
the result as a relative power deviation,

AP _ 2\/ Var{P} _ 4kTSysBC _ 2 1 (11)
P A “\Bct; SNR

NgA®
with the last equivalence applying to the DFT

spectrometer and including equations (4) and (6).

(10)

III. PHASE NOISE

In addition to the effect of AM noise on the frequency and
line profile uncertainty, the effect of phase noise can be
deteremined, in order to establish that the local oscillator
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Fig. 3. LO Phase noise convolves with spectral lines to distort them.

does not degrade the measurement accuracy further. As
depicted in Fig. 3, the LO phase noise profile is mixed with
the input signal, polluting it. Since the mixer operates like a
time domain multiplying element, the IF output is the product
of the LO and RF signals in the time domain. Since the phase
noise is described statistically in the frequency domain, the
RF signal must be converted to frequency domain and, by the
convolution theorem, the total signal is the convolution of the
two. The phase-noise distorted IF signal is [3, p503] —

Sir(F)= CSiolf = f)Spe (£ a2
For example, if the LO were a perfect sinusoid at
frequency Fjp, its Fourier transform would be

SLo(f)=5(f+fL0)+5(f—fLo) and the IF signal

would simply be a phase shifted version of the RF and image.

One problem presented by the phase noise is distortion of
the RF signal. If a strong line is close to a weak one, the
phase noise will spread out the line, increasing the chance of
it interfering with the weak one.

Besada [6] came up with a similar criterion based on an
effective spectrometer channel filter. He noted that the output
of one channel of the spectrometer would be:

Sir (f)= |H(f)|2 ﬁoSLo(f - f,)SRF (f,)df,, (12a)
similar to equation (12) but including the filter

transmission function H(f). The total channel output power is
then given by an additional integration:

P=[ |H(f)f (0520 (F = 1) e (£ b

Now reverse the order of integration:

P= I Serl P\ Suol s — £V HU Parly

which is a convolution of the RF signal with the IF
channel response:

Scran (f)= T S1o(f —f,)IH(f,szf,. (13)

This is just equation (12) substituting the RF line profile
SRF with the channel profile, IH(f)I*. Note that all of these
spectral densities are two sided, integrated from —co to +oo.
Hence, they should be determined from the normal one-sided
density by dividing by two. Also, S;o(f) is assumed even in f.
The convolution of equation (13) can be used to calculate
the distortion of the filter profile of the spectrometer channel,
IHO‘)I2 in the output response, Scyan by the phase noise, S;o.
If S;p were an ideal delta function Scyay would be the same
as IH()‘)IZ. In order to determine S;, it is necessary to
determine the effect of multiplication of the LO signal source
up to the submillimetre wave signal frequency on the known
(specified) low frequency LO source. According to the
simple model proposed by Walls and DeMarchi [7, 8] the
phase noise of a typical source can be divided into a central
“carrier” where the carrier is sharply peaked at low Fourier
frequencies < f,,, and the pedestal continues relatively flat out
to some much higher frequency B. f, might be around 1 kHz,
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Fig. 4. LO phase noise spectrum, showing carrier in center and
“pedestal”. Based on [9].

B around 1000 kHz. See Fig. 4. As long as f, is much smaller
than the channel bandwidth (as in our case) the phase noise
effect can be parameterized in terms of the total phase
variance of the pedestal region, defined as:

@, =[sp(flr,

(14)



where the parameter &, E<¢§>is the total integrated

phase error in the pedestal and the sub- or superscript p refers
to the pedestal. (Note that Walls and Dimarchi have the
integration carried out from f,,, though Bava starts at 0. Since
the pedestal has almost no power in the low-frequency-offset
carrier region, the difference is inconsequential.)

Since multiplication into the submillimetre wave range by
a factor of N increases the phase noise by N, the normal
small angle approximation where S;p = S, is longer valid.
Instead, the normalized carrier power (carrier power to total
power) can be approximated:

P. =exp (— O] » ) (15a)
Then the normalized pedestal power is:
P,=1-P =1-exp(-®,). @5b)

At low phase noise levels (&, << 1) P=1 and P,=®,. As
the phase noise levels increase with multiplication to higher
frequencies, signal power is transferred from the carrier to
the pedestal, broadening it. The model assumes that S, is not
affected by multiplication, other than the general 20logN
increase:

sP(o
sp()=—200 22 1
1+(f/Bf 7B 1+(s/B)
assuming the pedestal exhibits a Lorentzian frequency
dependence with 3-dB half-width bandwidth B, though
exponents other than 2 could also be used.

To calculate the effect of phase noise on the power in the
spectrometer channels, we want to determine S;,. Walls and
DeMarchi noted that the pedestal at frequencies well below
its bandwidth followed a simple law:

2pP?

S? (0)= >
LO() 7rB<I>p

Assume the pedestal has continues to exhibit a Lorentzian
frequency profile at high phase noise levels with a two-sided
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bandwidth Av,, the complete power spectrum of the pedestal

can be determined by combining the three previous equations

and noting that S;, integrated from O to o gives the total
pedestal power P,:

2p? 1
Stolf)=—2 ;
»[1+2f/Av,)
with the full-width bandwidth of:
>}

Av,=2B r
P 1- expi— @, i
Note that for small values of the total phase error, @), S;0
—S,, and Av,—2B. The model is valid until approximately
half the average power density is in the pedestal so that
Av,
exp( P p) Av.,
where the carrier linewidth, Av, is defined by [7, eqn (19)]:

KVC/ZS;(f)dlenZ

More generally, if the carrier noise profile can be modelled
as S,() = K, f*, where K, is determined from the
magnitude of S, at some frequency then,

_ 1/(e-1)
Av, = 2[“ ! K,aj
In2

a7

A. Effect of phase noise on spectrometer channel amplitudes

Fig. 5(a) shows a generic frequency synthesizer phase
noise spectrum S, at 30 GHz, as well as the frequency
multiplied version at 540 GHz, with N=18. The pedestal S;o
is also shown. In addition, S, and pedestal S;, for a
synthesizer with 20 dB worse phase noise is shown
(multiplied only) demonstrating the widened pedestal for @,
= 12. Shown in Fig. 5(b) are the dependencies on total phase
error of the carrier power, pedestal power and S;, pedestal
bandwidth relative to S, pedestal bandwidth.
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Fig. 5. (a) Synthesizer phase noise at 30 GHz compared to phase noise when multiplied to 540 GHz. For comparison, multiplied noise of a synthesizer
with 20 dB more noise is shown. (b) Dependence of carrier power, pedestal power and pedestal bandwidth on phase error.



The results of the convolution calculation in equation (13)
are shown in Fig. 6, demonstrating the distortion of the
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Fig. 6. Spectrometer profile distortion due to phase errors of 0.1, 1.1

and 11 rad® compared to the ideal line.
spectrometer line profile due to three levels of total phase
error. The @, = 0.1 line is faithful to the ideal down to about -
10 dB, but the @, = 1.1 line has leaked half the power of the
channel into its neighbours. The ®, = 12 profile is only
barely recognizable as a channel filter response.

These results argue that that the phase error should be
less than about 0.1 rad’ to yield accurate line profiles.

A. Effect of phase noise on frequency estimation

To estimate the effect of phase noise on frequency
measurement over some period of time, several frequency
uncertainty measures can be used. One that is commonly
adopted is the Allan or two-measurement variance, defined
as:

(18)

(ﬁf =02(0)=+ {[5e(0)- 5 0F).

Vo 2
where y;, ()= V. /Vyis the kth normalized frequency

measurement averaged over time 7, and V() is the frequency

average over all measurements. Over long periods of time
(tenths of seconds on up) the Allan variance can be
determined from sequential time interval (phase)
measurements. For shorter intervals, the Allan variance can
be calculated directly from the phase noise spectrum [9]:

03(f)=ﬁg“%(f)sin“(ﬂﬁ)df

- (mzvj [ £(f )sin® (e s )af

In oscillator and synthesizer phase noise specifications and
measurements, the phase noise density is often expressed
using the symbol .£ to match what would be observed on a
spectrum analyzer. Since S, includes the phase noise in both
sidebands, .£ = S,/2 [10]. To model the LO phase noise
spectrum we break it into segments with fixed power
frequency dependencies:

(19)

Solfin < f < far)=2£ [’;—k] (20)

where .4 is the phase noise at a reference frequency f; with
a frequency dependence of f“ over the frequency range
stretching from f; 4 to f> . In the literature [9, 11] the values of
the integral in equation (1b) are tabulated for single values of
o assuming that they stretch from O to infinity. More
complicated formulae can be derived for finite length
segments, each segment having an Allan variance of:

0} ale)= s [ 2201, )(fiJ sin (77 Jdf

(w2vy) r

The oscillator phase noise spectrum can then be fit
approximately by a piecewise f ™ series and integrated from
0 to some high frequency limit, f;.

As an alternative, equation (19) can be integrated directly.
However, at frequencies above 10/t or so, the sine factor in
(19) oscillates so rapidly that it is difficult to integrate
numerically. To solve this problem, the integral can be
divided up in to a region with frequencies below 10/,
integrated with the full integrand, and a region above 10/,
where the oscillatory integrand is approximated by its
average, 3/8.
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Fig. 7. Frequency Allan deviation due to high (@, =11) and low (@,
= 0.1) phase noise sources, compared to several USOs and the
breadboard measurements.

Fig. 7 shows the result of the integration for two values of
multiplied synthesizer phase error, 0.1 and 11 rad’. For
comparison some modern commercial USOs and the 1970s
era Galileo-Jupiter USOs are also plotted. The broken trace
labelled SPACES is calculated from the 540 GHz phase
noise measurement on the breadboard spectrometer described
later.

These numbers can be compared to the frequency accuracy
required to achieve the desired wind velocity resolution. The
Doppler relative frequency shift is the velocity divided by the
speed of light, c, the velocity resolution AV is given by:

AV = cﬁ

Vo
For a typical desired wind velocity resolution of 3 m/s,
the frequency must be accurate to 10", Note that all traces in
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Fig. 8. Submillimeterwave Planetary Atmospheric Chemistry Exploration Sounder (SPACES) laboratory breadboard.

Fig. 7 are well below the range of 10® on these time scales.
On longer time scales the frequency accuracy is dominated
by the long term drift of the USOs. Over those time scales
(years) other methods can be used to ensure that the USO
frequency is determined and corrected for.

A synthesizer that satisfies the total phase error @, < 0.1
rad® requirement discussed earlier will meet frequency
accuracy requirements of 10° as long as the measurement is
made for longer than a millisecond or so.

One further point to note: the segment of the Allan
deviation dominated by synthesizer phase noise (t < 1
second) has a 1/t integration time dependence, as opposed to
the © "* dependence predicted by the white AM noise
equation (5) presented earlier.

IV. BREADBOARD MEASUREMENTS

To demonstrate that the planetary submillimetre wave
spectrometer will work according to the requirements
described above, a laboratory breadboard version has been
built under a NASA Planetary Instrument Design and
Development and Program contract. The breadboard is
depicted in Fig. 8, which shows the synthesizer to the right,
the front end multiplier chain and mixer in the middle facing
the test source which made of an Agilent synthesized signal

generator and sub millimeter chain at the middle left. Behind
the test source is the 5 GHz IF second downconverter, which
feeds a 0-125 MHz digitizer board that is part of the control
computer, a standard PC to the right, out of the picture.

The digitization occurs at 250 Megasamples/second, and
the spectra are generated by an FFT software algorithm,
including a Hanning window to reduce side lobe generation.
The LO synthesizer operates in the 30 GHz band, and is
followed by an attenuator and a frequency tripler to raise the
frequency to 100 GHz, where the signal is amplified to feed
the X2X3 Schottky multiplier chain [12] to pump the mixer.
The mixer is a balanced fundamental type [13, 14].

In these tests, the 540 GHz test signal is received at a
frequency of 70 MHz. A single 4096-frequency spectrum
using 32.8 ps of data and channel width of 30.5 kHz appears
in Fig. 9. This is zoomed in to the region around 70 MHz,
and it and the approximate signal-to-noise ratio of 20 dB is
marked.

To assess the effect of switching frequencies rapidly, a
continuous measurement was made for 6.3 seconds while
switching LO frequencies approximately every 21 ms
between 540 and 570 GHz, yielding 3.15 seconds of data for
each frequency. In order to process these spectra, the line
amplitude and frequency must be estimated from the FFT
spectra.
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Fig. 9. A portion of a single spectrum showing the test signal at the 70 MHz 2n IF frequency.
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Fig. 10. Relative frequency (converted to velocity) and power plots over 3.15 seconds of observation.

A. Frequency and channel power estimators

In order to estimate the frequency and power in the CW
test signal this an interpolation algorithm was used on the
FFT data [15-17] starting with the amplitudes calculated
from the spectrometer having N channels, IX;l, k=1..N.

1. Find maximum magnitude peak, IX;l, and the largest
adjacent sample, 1X;,,)l, where o = £1.

2. Define: y= @

X k

3. Calculate §, the frequency offset from the center of the

kth channel. For a DFT spectrometer with a Hanning
window: 5_,27-1
I+y

4. The frequency estimate is given by fr =(k+5)BC,

where B¢ is channel bandwidth.
5. For Hanning windowed data the amplitude estimate [15]:
7 2

-0

A three-point interpolator calculated from the peak
magnitude, 1X;| and the two adjacent frequency magnitudes,
[X;—;! and |X;,,| could be used [16, 18]. However, [17] notes
that with reasonable SNR, this does not add substantially to
the accuracy. The three-point interpolator was tried, but
yielded results that differed by only a few percent from the
two-point interpolator above.

=

B. Measurement results

Fig. 10 shows the 3.15 seconds of accumulated relative
frequency and power data, comparing the switched data with
a steady (unswitched) data set taken without changing LO
frequency. For comparison to the 3 m/s velocity resolution
requirement described earlier, the frequency data have been
converted from frequency deviations to “velocity” deviations
via multiplication by the speed of light, 3X10® m/s. Each
point is the average of the frequency (or power level) over
the entire 18 ms record between switches. (The first 3 ms of
data after each frequency switch is deleted to allow the
synthesizer to settle on the new frequency).

Two things are apparent: first, there is a secular drift in
both data sets, but more pronounced in the switched data.
This is due to the unfortunate fact that the synthesizer has its
own TCXO reference, and is not lockable to the main system
reference as are the test generator and 5 GHz 2™
downconverter. As the synthesizer generates a fair amount of
heat during the test, the lower amount of drift during the
switched test is almost certainly due to the fact that the
system stabilized during the steady test, which was
performed directly preceding the switched test.

A second observation: other than the drift, there is no
apparent difference between the steady and switched data.
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Fig. 11. Allan deviation comparison for frequency (top) and power
(bottom).

The Allan deviation data depicted in Fig. 11 show a
different story. As with the plots of Fig. 10, the relative
power deviation shows very little difference between
switched and steady data sets. However, the frequency
deviation data show a large difference, especially in the



regime between about a half millisecond and 10-20 ms. A
close up of the frequency deviation data during several
switching sequences (Fig. 12) indicates the source of the
problem. The frequency synthesizer requires longer than 2.5
ms to settle on the new frequency after switching, requiring
about 10 ms instead. The original specification on the
synthesizer was 100 ms. This variation would seem to
compromise the use of frequency switching to accommodate
the science requirements. However, the use of longer
integration times between switching (100 ms) is acceptable
(at Mars, at least), which eliminates the problem, as long as
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Fig. 12. Close up of frequency measurement over several switching
cycles comparing steady and switched data.

the settling time is accounted for.

Plotted with the measured Allan deviation is the results of
equations (5) and (11) earlier for the deviations due to system
AM white noise, using BC=30.5 kHz and SNR=100 (20 dB).
The fact that the dependence of the frequency deviation on
time follows a ©' confirms the earlier prediction that
frequency (and power) deviations are dominated by the AM
white noise. The CRLB falls below the measurements, most
likely because the simple DFT interpolation algorithm trades
maximal likelihood estimation for speed and simplicity [17].

Finally, a phase noise measurement was made of the LO
system, both at 30 GHz and 540 GHz. See Fig. 13. These are
quick, somewhat rough measurements and should be
considered uncalibrated, since the effect of the test oscillator
has not been separated from that of the spectrometer.
Nevertheless, the synthesizer measurement matches the
specification (shown as diamonds) fairly closely. The
calculated phase errors at 30 GHz and 540 from equation
(15) are 0.00189 and 0.621 rad” respectively; the compare
value at 540 GHz to the 30 GHz error multiplied by the
square of the multiplication ratio: 0.00189 X 18> = 0.621,
indicating model consistency.

V. CONCLUSIONS

Several key points about the submillimeter wave planetary
atmospheric spectrometer have been demonstrated. The LO
synthesizer total integrated phase noise error at the signal
frequency should be < 0.1 radian®. As long as this difficult to
meet (considering lower power and mass demands) is met,
the phase noise is much less critical to frequency accuracy
for measurement times greater than about 1 millisecond.

Likewise, USOs are stable (Af/f0<3X10‘8) for integration
times of 0.1 sec or longer, but long term (10 years) stability is

a problem that needs to be considered during mission
planning. Finally, frequency switching works fine if the

observation time is much longer than synthesizer settling
time.
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