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Abstract— Resistive films are a commonly used absorber for
free-space coupled TES detectors at sub-mm and far-infrared
wavelengths. A formalism is presented for calculating the full
partially coherent optical behaviour of such devices in a rigorous
way. The scheme is based on a boundary condition on the resistive
film, which takes into account the film’s finite surface impedance
and allows the incident field to be written in terms of the induced
current. A Method-of-Moments-like (MoM) approach is then
used to invert this relation to give the current in terms of the
applied field. Rather then use a set of ‘testing functions’ as in
traditional MoM approaches, a set of dual basis functions is used,
leading to a particularly elegant formulation. Using the equation
for ohmic power dissipation, it can then be shown the power
absorbed by the detector is given by the total contraction of the
coherence dyadic of the incident field with a second dyadic field,
which will be referred to as the Detector Response Function
(DRF). The DRF completely describes the optical behaviour
of the detector. The scheme is easily applied to the modelling
of arrays of films, allowing cross-talk between pixels to be
investigated. We will discuss the details of our method, and
present results for the intensity and polarisation response of
resistive film TESs to plane wave radiation. In particular, we will
concentrate on how the film’s dimensions and surface impedance
affect its behaviour.

I. I NTRODUCTION

A common architecture for free-space-coupled THz detec-
tors is the Transition Edge Sensor (TES), which comprises
of a rectangular resistive film and superconducting bilayer
on a micro-machined Si3NX island. In operation, the bilayer
is biased on its normal-superconducting transition and the
island’s temperature is kept constant by the resulting electro-
thermal feedback. Incident radiation induces currents on the
film, which dissipate power. The amount of power dissipated
can then be measured from the changes in bilayer current
needed to maintain island temperature, and this provides a
measure of the power flux in the incident radiation.

To fully understand the optical behaviour of such devices,
it is vital to understand the relationship between the incident
electromagnetic field and the surface currents. The problem
is complicated by the possibility of exciting several different
current distributions incoherently on the same film. If thisis
the case the film will be incoherently sensitive to the power in
a particular set of modes, with the responsivity of the device
varying between the modes. It can be shown that the partially
coherent optical behavior of such multi-moded detectors can
be described by a two point dyadic response function [1],

which we will call the detector response function (DRF). The
detector output is given by the total contraction, over some
reference surface, of the DRF with the coherence dyadic of
the incident radiation.

We have calculated the DRF for resistive film TES detectors
rigorously for the first time using a new scheme described
in [2]. The scheme is based on a boundary condition on
the film, which takes into account the film’s finite surface
impedance and allows the incident field to be written in terms
of the induced current. A Method-of-Moments-like (MoM)
approach is then used to invert this relation to give the current
in terms of the applied field, and subsequently this can be
used to find the DRF from the equation for ohmic power
dissipation. Rather then use a set of ‘testing functions’ as
in MoM approaches, a set of dual basis functions is used,
leading to a particularly elegant formulation. The scheme is
easily applied to the modelling of arrays of films, allowing
cross-talk between pixels to be investigated. We will discuss
the details of our method, and present results for the intensity
and polarisation response of resistive film TESs to plane wave
radiation. In particular, we will concentrate on how the film’s
dimensions and surface impedance affect its behaviour.

The formalism that will be developed is also relevant for
understanding the optical behaviour of Kinetic Inductance
Detectors (KIDs). A KID is typically comprised of a super-
conducting microstrip circuit, which is resonant at microwave
frequencies, connected to an optical absorber. The device is
engineered so that an incident photon generates excess quasi-
particles in the superconducting circuit by breaking Cooper
pairs. The excess quasiparticles alter the electrical properties
of the circuit, and the incident power flux is determined by
probing the corresponding changes in the circuit’s resonant
behaviour. At sub-mm and far-infrared wavelengths a planar-
antenna-like structure is commonly employed as the absorber.
Quasiparticles are generated by the power dissipated by lossy
currents flowing on the antenna. Instead of being lumped at
the feed, the antenna load in these absorbers is, in effect,
distributed over the entire structure. Consequently, theycannot
be treated as conventional antennas, and full electromagnetic
simulations must be used to determine the power absorbed.
Antenna structures implemented as patterned thin films can
be treated identically to the resistive film absorbers for TESs,
and the methods outlined in this paper are directly applicable.
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II. BASIC FORMALISM

The full formalism for the simulations has been discussed
in detail by Withington[2]. This summary will concentrate on
the analysis of a single film. The extension to arrays of films is
straightforward, but leads to additional notational complexity.
It will be discussed briefly at the end of the section, although
interested readers should consult the original paper for the
complete analysis[2].

In the derivation that follows the incident field will assumed
to be temporally stationary, allowing the power absorbed at
different wavelengths to be treated independently. Any vector
fields introduced should be assumed to be the analytic signal
representation of the particular frequency component of the
field being considered. The values for the power dissipated
represent the power dissipatedper unit bandwidthat the
radiation frequency. However, as we will only consider narrow
band illumination and so they may be treated as the total power
absorbed by the film.

A. Determining the induced currents

To determine the power absorbed by the resistive film in
the TES, it is first necessary to deduce the currents which the
incident field excites upon the thin-film absorber. Consider
a thin resistive film occupying the regionS of the plane
z = z0. Let rt denote a point(x, y) on the film’s surface,
with the absolute position of the point in space given by
r = rt + z0ẑ. For simplicity, we will assume that the surface
impedance of the film, inΩ, is given by the scalar function
Zs(rt). Directional anisotropies in the surface impedance may
be included by elevatingZs(rt) to a dyadic function ¯̄Zs(rt),
and non-local behaviour by elevating it to a two point function
¯̄Zs(rt1, rt2).

The incident electric fieldEI will excite surface currents on
the film, and these currents in turn produce a scattered electric
field ES . The current density associated with the induced
currents is off the form

J(rt, z) = JS(rt)δ(z − z0), (1)

where we shall refer toJS as the surface current density. As
the currents are confined to flow on the surface of the film,JS

is tangential to the film surface at all points, and as a surface
current density it has unitsAm−1. Following Senior[3], we
assume that over the surface of the film, the total electric field
–incident plus scattered– and the surface current density satisfy
the relation
[

¯̄I−ẑẑ

]

·
[

EI(rt1, z0)+ES(rt1, z0)
]

= Zs(rt1)JS(rt1). (2)

The dyadic acting onEI and ES simply picks out the
component tangential to the film. (2) is essentially the well-
known conductivity equation for the current density applied
to surface currents, and is used widely in the electromagnetic-
modelling community as a starting boundary condition.

We assume now that in the space containing the film there
exists a relationship betweenES andJ in terms of a Green’s
dyadic of the form

ES(r) =

∫

d3r ¯̄G(r1; r2) · J(r2). (3)

Substituting (3) and (1) into (2) gives
[

¯̄I − ẑẑ

]

·EI(rt1, z0) = ZS(rt1)JS(rt1)−
[

¯̄I − ẑẑ

]

·

∫

d2rt2
¯̄G(rt1, z0; rt2, z0) · JS(rt2, z0).

(4)

This equation gives the tangential component of the incident
field if the surface current is known, and must be inverted to
give the current from the incident field. This is done by writing
JS and

[

¯̄I − ẑẑ

]

·EI in decomposed form,

JS(rt) =
∑

n

αnUn(rt) (5)

and
[

¯̄I − ẑẑ

]

·EI(rt, z0) =
∑

m

βmVn(rt). (6)

The basis functions set used for the field and the current
need not been the same, and the sets need not be individually
orthogonal. Basis functions can be defined over a sub-region
of the film (local) or defined over the entire film (global).
Localised basis functions are useful for first determining the
surface current distributions that can be excited on a film. For
array simulations, where it is beneficial to use small basis
sets, they may then be replaced with a reduced set of global
basis functions chosen to best span the current distributions
observed. Substituting (5) and (6) in (4) yields

∑

m

βmVn(rt1) =
∑

n

αn

(

Zs(rt1)Un(rt1)−

[

¯̄I − ẑẑ

]

·

∫

d2rt2
¯̄G(rt1, z0; rt2, z0) · Un(rt2)

)

.

(7)

In a traditional MoM approach[4], a set of so-called weighting
and testing functions would now be introduced. The inner
product of these functions with (7) is would then be taken
to generate a matrix equation. Instead we will make use of
the duals,{Ṽm(rt)}, of the field basis functions,{Vm(rt)}.
The dual basis set is defined such that

∫

d2rt Ṽ∗
m(rt) · Vn(rt) = δmn, (8)

and its explicit calculation is discussed in [5]. Left multiplying
(7) by the conjugate of each dual basis function, then integrat-
ing, results in the matrix equation

β =
(

Z − G

)

·α, (9)

where

Zmn =

∫

d2rt ZS(rt) Ṽ
∗
m(rt) · Un(rt), (10)

and

Gmn =

∫

d2rt1

∫

d2rt2 Ṽ∗
m(rt1) ·

¯̄G(rt1, z0; rt2, z0)·Un(rt2).

(11)
Relation (2) has successfully been reduced to a matrix equa-
tion, and may be inverted by finding the pseudo inverse of the
matrix on the left hand side. Letting,M = (Z−G)−1, we have
explicitly that

α = M · β. (12)
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Using (6) and (8) it is straightforward to show that

βm =

∫

d2rt Ṽ∗
m(rt) · EI(rt, z), (13)

This allows the decomposition coefficients for the incident
field to be found, which may then be used with (12) and (5)
to construct the induced current. Consequently onceM has
been found for the particular film, we are able to calculate
the current induced on it by any incident field at the relevant
wavelength.

B. Determining the power dissipated in the absorbing film

Of principle interest to us is the total powerP dissipated in
the film, as it is to this that the TES as a whole is sensitive.
The power dissipated by the currents is given by

P =
1

2

∫

d2rt ℜ[Zs(rt)]|JS(rt)|
2. (14)

Substituting (5) into (14), we find that theP can be written
in terms of the current decomposition coefficients as

P =
1

2
α† · C · α, (15)

where

Cmn =

∫

d2rt ℜ[ZS(rt)]U
∗
m(rt) · Un(rt). (16)

The expression forP in terms of the field decomposition
coefficients follows logically using (12):

P =
1

2
β† · M

† · C · M · β. (17)

The power absorbed can now be calculated for a given incident
field.

C. The Detector Response Function (DRF)

A very powerful result can be obtained by substituting (13)
into (17). Letting

D =
1

2
M

† · C · M, (18)

we obtain

P =
∑

m

∑

n

∫

d2rt1

∫

d2rt2

Dmn

(

Ṽ∗
m(rt2) · EI(rt2, z)

)∗(

Ṽ∗
n(rt1) · EI(rt1, z)

)

.

(19)

The kernel of this integral may be written in a more instructive
form by adopting double dot notation for dyadics:
∑

m

∑

n

Dmn

(

Ṽ∗
m(rt2) · EI(rt2, z)

)∗(

Ṽ∗
n(rt1) · EI(rt1, z)

)

=
(

∑

m

∑

n

DmnṼm(rt2) Ṽ∗
n(rt1)

)

··
(

EI(rt1, z)E∗
I(rt2, z)

)

.

(20)
Using (20) and then taking the ensemble average of (19) gives

< P >=

∫

d2rt1

∫

d2rt2
¯̄D†(rt1; rt2) · ·

¯̄E(rt1; rt2), (21)

where
¯̄E(rt1; rt2) =

〈

EI(rt1, z)E∗
I(rt2, z)

〉

(22)

is the correlation dyadic of the incident field, or EFC, and

¯̄D(rt1; rt2) =
∑

m

∑

n

Dmn Ṽm(rt1)Ṽ
∗
n(rt2). (23)

is the Detector Response Function, or DRF.
Equation (21) completely describes the optical response of

the detector to partially coherent fields[1], [6]. The relationship
between the DRF and the detector is analogous to that between
an antenna and its reception pattern. However, whereas the
reception pattern of a classical antenna is a fully coherent
field, the DRF is a partially coherent field. It describes the
state of coherence of the incident field in which the detector
is sensitive to power. The amount of power absorbed by the
detector depends on how well the actual state of coherence of
the field, described by the ECF, ‘overlaps’ with the desired
state. (21) is simply the inner product between these two
state vectors in an abstract space. Like a reception pattern,
the DRF can be back-propagated through an optical system
to determine the responsivity of the detector to power on a
different reference surface. As a partially coherent field,the
DRF admits a decomposition in terms of coherent modes.
These coherent modes, which are called the natural modes
of the detector, correspond to the modes of incident field in
which the detector is incoherently sensitive to power.

D. Extension to arrays of films

For an array of films, the boundary condition (2) must be
satisfied on each film. Again the incident field and surface
current density on each film are in expanded in a set of basis
functions. A matrix equation is set up as in section II-A,
remembering to take into account the cross terms between
basis functions on different films (which are coupled by
¯̄G(rt1, rt2)). The process of finding the induced currents then
follows in the same way as in the case of the single film. When
calculating the power absorbed, the currents over a sub-setof
films - ranging from an individual pixel to an array sub-cell
- can be considered and the appropriate DRF for that sub-
assembly found. This formulation takes into full account the
electromagnetic cross talk between members of the array when
considering the behaviour of single elements.

III. S IMULATION DETAILS

A. Arrangement considered

As a first application of the scheme outlined above, we have
studied the optical properties of square films in free space as a
function of the film size and surface impedance. The simula-
tions represent the behaviour expected for a single resistive
film TES bolometer isolated from any scattering structure.
This is an unlikely configuration in reality, as such devices
are typically employed in imaging arrays where, at minimum,
there will be scattering from adjacent pixels. Simulationsof
full arrays are computationally intensive, and it is desirable
for efficiency to use the smallest possible basis set on each
film that can adequately describe the current distributionsthat
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Fig. 1. Diagram showing the arrangement considered in the simulations and
the notation used for the incident radiation.

may be excited. Simulations on a single detector are useful
for determining these current distributions, and are therefore
an important first step in the analysis of a full array. In
addition, in a recent paper [7] we have proposed a simplified
model for the electromagnetic behaviour of thin-film absorbers
and investigated the resulting optical behaviour. Part of our
motivation for performing simulations on single detectorswas
for comparison with this previous work. In particular, we were
keen to determine the exact conditions under which the model
is a good approximation to the actual behaviour. Finally, we
are also interested in how the optical behaviour of the detector
may be altered by patterning the absorbing film. This is best
investigated initially without the additional complication of
scattering from other structures.

Figure 1 illustrates the geometry considered. The film is
assumed to a square of side lengthp lying at the centre of the
planez = 0. In subsequent sections we consider illuminating
the film with a monochromatic plane wave of wavelengthλ,
and it is useful to consider the form the incident field takes.
We restrict ourselves to waves whose direction of incidence
is in the (x, z) plane, and will useθ to denote the angle the
direction of travel makes with the positivez-direction. The
functional form of the incident field over the film’s surface is
given by

E(rt) = E0 exp[−ikx sin θ]

{

cos θx̂ − sin θẑ p-polarised

ŷ s-polarised,
(24)

wherek = 2π/λ and we adopted the normalp and s polar-
isation states. In the sections that follow we will concentrate
on the optical behaviour of the film under these illumination
conditions.

B. Implementation details

The film is assumed to be in free space, so the Green’s
dyadic ¯̄G(rt1, z1; rt2, z2) for the problem is

¯̄G(rt1, z1; rt2, z2) = iωµ0

(

¯̄I +
1

k2
∇1∇1

)

g(rt1, z1; rt2, z2),

(25)

with

g(rt1, z1; rt2, z2) =
exp

[

ik
√

|rt1 − rt2|2 + (z1 − z2)2
]

4π
√

|rt1 − rt2|2 + (z1 − z2)2
.

(26)
It is immediately obvious that the Green’s dyadic is singular
when bothrt1 = rt2 and z1 = z2, and that this complicates
the numerical evaluation of the integrals in (11). We are free to
choose to the current basis functions and field dual functions,
and by careful choice we can to some extent alleviate these
numerical problems. In our simulations we employed the same
set of Rao, Wilson and Glisson (RWG) basis functions[8] de-
fined on a square mesh for both sets for both functions. RWG
basis functions are used extensively in the MoM community,
and the evaluation the integral of their product with the free
space Green’s dyadic is well documented. The approach taken
is to break the kernel of the integrals up into a singular and
non-singular part, a procedure called extracting the singularity.
The non-singular part is then handled numerically, whilst the
singular part when RWG basis functions are used is simple
enough that it may be evaluated analytically[9]. Using the
same set of basis functions for the current basis and field duals
also has the advantageZ = C, reducing the computations that
must be performed.

C. Simple model for the excited current

Full electromagnetic simulations may be to cumbersome for
some design problems. In these circumstances it is useful to
have a simpler model for the film’s behaviour, and to know
the regimes in which its use is valid. As a first approximation
to the full behaviour, the non-local response introduced bythe
scattered field can be ignored. The surfaced current,JS(rt),
induced at a point on the film then depends only on the
incident field,EI(rt), at that point. Naively, we might then
assume thatJS(rt) ≈ EI(rt)/ZS(rt) will be a good model
for the induced currents. However, it is unphysical as in the
limit ZS → 0 the surface current density tends to infinity at
all points.

For guidance we consider the analytically soluble problem
of a plane wave incident normally on an infinite film. From the
translational invariance of the problem, the wave must excite
an infinite sheet current. It can be shown that the electric field
radiated by an infinite current sheet lying in the planez = 0
is given by

ES(z) = −
Z0

2
JS exp(ik|z|), (27)

whereZ0 is the impedance of free space. Using (27) in (2)
and rearranging gives

|JS | =
|EI|

Zs + 1

2
Z0

, (28)

where the effect of scattering appears to be to increase the
effective surface impedance seen on induction by1

2
Z0. Adopt-

ing this effective surface impedance as the proportionality
constant, we have for our simple model

JS(rt) ≈
1

ZS + 1

2
Z0

(

¯̄I − ẑẑ

)

·EI(rt, z0), (29)



21ST INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY, OXFORD, 23-25 MARCH, 2010.

where the dyadic operator is there so the induced current only
has components tangential to the surface. In the subsequent
sections we shall compare this model with the simulation
results to determine the limits of its application. The optical
behaviour associated with this simple model is investigated in
detail in [7].

IV. SIMULATION RESULTS

A. Current distributions excited by ans-polarised plane wave

In order to understand power absorption by the film, it is
useful to first consider the spatial form of the induced currents.
Figure 2 shows the current distribution induced on films of
various size and surface impedance by ans-polarised plane
wave incident fromθ = 0◦. Film size,p/λ, increases across
the rows of the figure, and the surface impedance of the
film, Zs down the its columns. In each plot the black line
shows the current along the cut(x, 0, 0), and the grey line the
currents along the cut(0, y, 0). For both cuts the magnitude of
the dominant componentJy of the surface current is plotted,
and it is normalised to the incident magnetic field intensity
H to remove the dependence on incident field strength. For
all the simulations, a41 × 41 sub-domain mesh was used
and convergence of the solution was checked. Where the
approximate model (29) is valid, we expect the plots in fig. 2
to be straight lines at

|Jy|

|H|
≈

2Z0

2ZS + Z0

. (30)

The current distributions found for perfectly electrically
conducting (PEC) films (top row of figure 2) are in agreement
with those in the literature[8], providing validation of the code.
Across the rows of figure 2, wherep

λ
is increasing, the surface

current distribution along both cuts are observed globallyto
flatten out. Flatten here is used to mean that the scale of
any variation in |Jy| decreases relative to the mean value.
On local scales we see the development of standing wave
like patterns in|Jy|, and these most likely result from the
trapping of the scattered field between film edges. For fixed
ZS , as p

λ
is increased the mean current level is observed to

remain approximately constant. However, this should not be
taken as meaning the power absorbed will scale simply with
the increased area. Remember that the local power dissipation
scales with|Jy|

2, making P sensitive to the precise spatial
current distribution. By the same principle, we see that in
electrically small, lowZS films, the edges are the regions
of highest power dissipation. Down the columns of figure 2,
where ZS is increasing, the same flattening of the current
distributions is observed. However, there is no accompanying
development of fine scale structure and, for fixedp

λ
, asZS is

increased the mean current along each cut decreases.
Visually, the current distributions obtained agree best with

the predictions of (29) when eitherp
λ

is larger than unity and/or
ZS is large compared withZ0. The numerical values for the
current in these regimes are also in good agreement with the
values expected from (30), which have been collated in table
I. When Zs is large,Z dominates the right-hand-side of (9).
For a uniform impedance film we then haveM ≈ ZS I, or

|Jy |/|Hx| ZS/Z0

0.00 2.00
0.50 1.00
1.00 0.67
2.00 0.40
10.0 0.10

TABLE I
VALUES OF |Jy |/|Hx| AS A FUNCTION ZS PREDICTED BY SIMPLE MODEL

JS(rt) ≈ EI(rt)/ZS . This is the same as (29) whenZS >>
Z0. Physically, whenZS is high the induced currents are small
so the scattered field is weak and can be ignored – this is
the main assumption made in the simple model. Whenp

λ
is

large, the edges only weakly effect the behaviour in the bulk
of the film and it may essentially treated as being infinite in
dimension. Since we used the case of an infinite film to guide
our model, it is expected they will agree.

Figure 3 is the equivalent of figure 2 for a plane wave
incident at angleθ = 90◦, i.e. edge-on. The current distribution
along the(0, y, 0) cut is, in all cases, similar in shape to that
observed for a normally incident wave. Along the(0, x, 0)
cut different behaviour is observed. WhenZS is less thanZ0,
in general the current distribution along(0, x, 0) is peaked at
the leading edge of the film, then decays exponentially in the
direction of propagation of the wave across the film. This is the
effect is a result of the currents on leading edge screening the
bulk film. It means that for large, lowZS , films the majority of
the induced current is confined to a small strip near the edge
when θ = 90◦. This fact will become important in the next
section when we discuss how the edge on absorption cross
section scales withp.

Similar trends in the current distributions excited by the
edge-incident wave are observed for increasingp

λ
andZS as

for the normally-incident wave. One difference is that with
ZS fixed, the mean current now decreases asp

λ
increases due

to the decay over the films surface. In the limitp
λ

> 1 and
ZS > Z0 the simulations for the edge incident wave are still in
good numerical agreement with the simple model, even though
it was formulated assuming a normally incident wave.

It is worth noting that since currents are excited on the
film when ans-polarised wave is incident edge-on, power is
dissipated and the TES is therefore be sensitive to radiation
incident from edge-on. This is a fact which may not be
immediately obvious, and is discussed in detail in the next
sub-section. It has important implications for the stray-light
sensitivity of thin film devices.

B. Effective area of the film as a function ofθ and the
polarisation

A useful measure of the ability of a film to extract power
from the incident plane wave is the effective area,AE . The
effective area is ratio of the total powerP dissipated in the
film to the power flux in the incident wave:

AE =
2Z0P

|E0|2
. (31)

Obviously, AE will be a function of both the direction of
incidence and polarisation of the plane wave. Usually we plot
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Fig. 2. Plots showing the current distributions excited by an s-polarised wave incident at an angleθ = 0◦.

AE/λ2 and usep
λ

, as this allows the scaling of the results
from the simulation to any physical scale.

We will restrict ourselves to plane waves incident according
to the restrictions in III-A. With the approximate model of the
induced current, using (29), (14) and (24) gives

AE(θ)

λ2
=

4Z0ZS

(2ZS + Z0)2

( p

λ

)2

{

1 s-polarised

cos2 θ p-polarised.
(32)

Notice that the response tos-polarised waves is expected to
be isotropic in the regime where the model is valid, i.e. the
film should be as sensitive to plane waves incident edge on
as it is face on. It may at first appear surprising that the film
is sensitive to power incident edge-on, but remember that the
E-field when the wave iss-polarised andθ = 90◦ is directed
tangential to the film surface. It is, therefore, still able to excite
a surface current and dissipate power. By contrast theE-field

associated with the equivalentp-polarised wave is normal to
film, is unable to force a current and soAE(90◦) = 0. The
normal and edge-on cross sections forp-polarised radiation
are the same in the simple model as the currents excited by
the two waves are identical. This is not the case in reality, as
will be seen shortly.

Figure 4 shows polar plots ofAE as a function ofθ and
polarisation direction for films of several different values of
p
λ

and ZS . The size of film decreases down the rows of
the array, and the surface impedanceZS increases across the
columns. These plots describe the angular response that would
be expected from a resistive film bolometer.

At low ZS the results for the4λ × 4λ film (first row of
figure 4) are as we might have expected intuitively.AE(0◦)
for both thep- ands-polarised wave is approximately half the
physical pixel area (except at very lowZS). For thes-polarised
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Fig. 3. Plots showing the current distributions excited by an s-polarised wave incident at an angleθ = 90◦.

wave,AE(90◦) is zero for the reasons explained above. For
thep-polarised waveAE(90◦) is finite, but still much smaller
than the face-on cross section. Generally, for thep-polarised
plane the film behaves as it is comprised of two Lambertian
absorbers, one of which is orientated parallel to the film and
the other normal to it. AsZS is increased the response to
the s-polarised wave becomes more forward directed, while
AE(90◦) is seen to increase towardsAE(0◦). At very low
ZS , the films absorption patterns exhibit lobe structure like an
antenna.

TheAE curves for theλ×λ and0.25λ× 0.25λ film (rows
two and three of figure 4) have a similar structure to those for
the much larger film. However, for allZS the values ofAE(0◦)
andAE(90◦) for the p-polarised wave are more comparable.
At low ZS , AE(90◦) even exceedsAE(0◦), which is not
intuitive. At highZS , the results for electrically small films are
in excellent agreement with the behaviour predicted by (32).

It is worth considering how the effective area for as-
polarised edge-incident wave can exceed that for a normally
incident wave of the same polarisation, as observed for the
electrically small films in figure 4 whenZ0 < Zs. This
behaviour can be explained in terms of the current distributions
observed in section IV-A. When ans-polarised plane is
normally incident, the induced current can be approximatedas
a uniform sheet. The magnitude of the current is approximately
independent of film size (figure 2), so we expect the total
power absorbed, and thusAE(0◦), to scale asp2. For the
equivalent edge incident wave, ifZs < Z0 the current is
confined to a narrow strip at the leading edge of the film.
Its value on the leading edge for fixedZS is approximately
independent of the film size (figure 3), so we expectAE(90◦)
to scale asp. This result also follows by noting that the narrow
strip current at the edge should behave like a thin-wire antenna.
These simple scaling rules can be seen to roughly hold for the
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Fig. 4. Plots showing the effective area of the absorber as a function of polarisation and incidence angle.AE/λ2 is plotted on the polar axis.

values in table II, which are for a film withZS = 0.5Z0. If
AE(0◦) ∝ p2 and AE(90◦) ∝ p hold for all p, it is always
possible to find a value ofp below whichAE(90◦) is greater
then AE(0◦). This explains why, whenZS < Z0, the edge-
incident value ofAE for ans-polarised wave exceeds the value
for normal incidence only once the film falls below a certain
size relative to the wavelength, e.g. figure 4.

Extrapolating in the other direction, forZS < Z0 we would
expectAE(90◦) to grow much faster withp thenAE(0◦) for
thep-polarised wave. For large, low impedance films, theAE

for a normal incident wave should therefore greatly exceedAE

for edge-on wave, as observed in the data. WhenZS > Z0,
from figure 3 we see that for edge-incident waves the current is
less concentrated at the leading edge. In this circumstance, we
would therefore expectAE(90◦) ∝ p2. This should mean for
highZS films thatAE(0◦) andAE(90◦) should be comparable
for all p, in agreement with the observed trends.

Finally it is traditionally assumed that a free-standing thin
film is only able to absorb, at maximum, half of the power
incident upon it. We would therefore expectAE to always
be less than or equal to half the film’s geometric area,p2.

p/λ AE(θ = 0◦) AE(θ = 90◦)

0.25 0.06 0.06
0.50 0.17 0.20
1.00 0.60 0.60
2.00 2.00 1.5
4.00 8.00 3.5

TABLE II
AE/λ2 AS A FUNCTION OFp FOR A WAVE INCIDENT NORMALLY AND

EDGE-ON, ZS = 0.5Z0 .

This indeed the case whenp > λ in figure 4, however for
the electrically small films values ofAE almost equal to the
physical area are observed. It is well known from antenna
theory that the effective area of an electrically small antenna
can exceed its physical area (e.g. the Hertzian dipole), andthe
observed behaviour is simply a manifestation of this effect.

C. Detector Response Function (DRF)

The DRF was introduced in section II-C and fully describes
the response of the detector to partially coherent radiation. A
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Fig. 5. Plot of part of the DRF for a 188.5Ω 0.25λ × 0.25λ film. y1 =
y2 = 0

useful physical picture of the DRF is as the correlation dyadic,
(22), of the particular state of coherence of the incident field to
which the detector is responsive. A natural terminology that
then arises is to describe the detector response as coherent,
partially-coherent or incoherent depending on the level of
coherence in the field the DRF describes. As an example,
consider the DRF predicted using the simple model for the
electromagnetics of the field from III-C. Substituting (29)into
(14), it is straightforward to show that

¯̄D(rt1, rt2) =
ZS

2(ZS + Z0/2)2

(

¯̄I − ẑẑ

)

δ(rt1 − rt2), (33)

which represents a fully incoherent response. Power detectors
that use traditional antennas, for example a microwave ra-
diometer, are an example of a fully coherent detector. Partially
coherent detectors show intermediate behaviour, with the DRF
taking non-zero for small values of|rt1 − rt2|.

Space precludes a full discussion of DRFs calculated for
the resistive films, but fig. 5 has been included to show the
general behaviour. The data in the plot is for a0.5λ × 0.5λ
film with uniform surface impedanceZS = 0.5Z0. There are
two main problems that arise when trying to represent DRFs
graphically. The first is that they function of two position
vectors, which in this case results in a four-parameter function
¯̄D(x1, y1;x2, y2). For all the lines in fig. 5,y1 andy2 are zero,
while each line represents results for a different value ofx2

(which are equally spaced along the cut(x, 0, 0)). This leaves
x1 as the dependent variable. The second difficulty is that the
dyadic has multiple elements. In fig 5 only theyy component
is shown. A sharp peak in each line is observed at point where
x1 = x2. Further simulations have shown that these peaks
behave like delta functions, and correspond to the incoherent
part to the film’s response. Unlike the behaviour predicted by
(33), the incoherent response is non-uniform over the film’s
surface and is observed to decrease at the edges. Coherence
is observed in the DRF over scales|x1 − x2| < 0.05, and
so overall the response of absorber is partially-coherent.This
coherence results from the ability of the induced current atone
point to effect the current at a second point via the scattered
field.
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Fig. 6. α = AE(θ = 90◦)/p2 vs ZS for various film sizes

D. ChoosingZS to maximise the absorbed power

When designing a resistive film TES detector, the surface
impedance of the film is usually chosen to maximise the
absorbed power. For electrically large (p >> λ) free-standing
absorbers, it is usually assumed that the optimal value forZS

is 0.5Z0 as a result of the analysis of the case of an infinite
film (section III-C). However, there is no corresponding result
or advice for electrically small films. In order to rectify this,
we investigated the effect ofZS on α = AE(θ = 0◦)/p2 for
various size films and the results are shown in figure 6. For
each size of film, the effective area has been normalised to
the film’s physical area so that the curves can all be shown
on the same axes. Also included is the analytic result for an
infinite film, and it is reassuring the simulations tend to this
line when p

λ
is large. As p

λ
decreases the curve are observed

to become increasingly sharply peaked, and the location of
the maxima to move. There appears to be no definite rule
about the value ofZS needed to match the film to free space.
In the range p

λ
= 4.0 − 0.5, the value ofZS at which α

is maximised –i.e. the match value– is observed to decrease
with decreasingp. However, by p

λ
= 0.25 it seems to have

increased again. Consequently, these curves demonstrate that
for optically small devices, full electromagnetic simulations,
of the type described, will most likely be needed at the design
stage to find the optimumZS .

The code also allows us to investigate the effect that a
non uniform surface impedance has on the devices optical
behaviour. In particular, we have studied the effect of ‘striping’
the film, i.e. breaking into up into an array of parallel strips,
as opposed to one continuous film. Figure 7 showsAE as a
function ofθ for two λ×λ films made out of the same material
with the sameZS = 30Ω (well below the match point). The
film in 7(a) is continuous, while the film in (b) has been
patterned into an array three identical strips in they-direction,
separated by two gaps of the same width and occupying the
same overall footprint. The striping is seen to direct the films
response top-polarised waves forward:AE(0◦) is increased
and AE(90◦) decreased compared with (a). The trade-off is
that response tos-polarised waves is strongly suppressed in (b)
compared with (a), which depending on the situation this may
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Fig. 7. Effect of striping the resistive film. Sub-figure (a) shows the results
for a uniform λ × λ film with ZS = 30Ω. Sub-figure (b) shows results
for identically sized film with the sameZS , however the metallization has
now been divided into three identical strips separated by gaps of equal width.
The patterning of the film is shown in the bottom right-hand corner of each
sub-figure.

or may not be beneficial. This behaviour can be explained
in terms of the effective surface impedance of the striped
film. To currents flowing parallel to the strip orientation, the
film sections appear like a parallel array of lumped resistors.
Adding more high resistance gaps will therefore push the
effective film impedance in this direction up. For a low surface
impedance material (e.g.30Ω/sqr) this can bring the film’s
effective surface impedance closer to the match value. It isthis
effect that causes the increase inAE(0◦) for the s-polarised
wave in 7(a). Currents attempting to flow perpendicular to the
strips see a broken path and correspondingly a very highZS .
This leads to the decrease inAE(90◦) for thep-polarised wave
in 7(a). Striping offers the possibility of making resistive film
detectors with highly polarised beams, or alternately a method
of improving the matching of lowZS films to free space.

V. CONCLUSIONS

It is possible to analyse the optical behaviour of certain
classes of power detector in a rigorous way by using a
method-of-moments like formulation to determine the power
dissipated in the thin, resistive, films that comprise them.The
far-field response, polarisation and natural detector can be
calculated numerically, as well as the cross-talk between adja-
cent detectors in an array. To demonstrate the technique, full
simulations of a single, isolated, resistive film TES detector
were performed. The effect of the absorbing film’s dimension
and surface impedance have on the device’s optical behaviour
have been investigated rigorously, leading to the following
recommendations:

• When the resistive film is electrically large and/orZS >>
Z0, the optical behaviour of the TES is well described by
the simple model described in section III-C and [7]. When

the absorbing film is electrically small and/orZS < Z0,
full electromagnetic simulations, as described here, must
be performed to determine the value ofZS required for a
match, as well as other aspects of the optical behaviour.

• Resistive film bolometers are expected to be sensitive to
stray light at high angles of incidence. This will not be
so much of a problem in the centre of an imaging array,
where the pixels shield each other. However it may be an

issue for detectors at the edge. A possible solution is to
introduce a guard ring around the array, which will also
mitigate edge effects in the beams.

• By using a spatially varying surface impedance, the
polarisation properties of the detector can be altered. A
striped pattern can also be used to obtain a better match
to free space when only lowZS films can be fabricated.
We have investigated the effect of ‘striping’ the film in
detail, and hope to produce a paper with some design
rules in the near future.

Future work will focus on analysing the interaction between
the absorbing films in an imaging array. We have already
determined how to include a ground plane in the simulations
via the Green’s dyadic. This will allow the analysis of a very
common detector architecture, where a back-short is placed
behind the film to improve absorption. Additionally, we are
using the modelling scheme described in the paper as a tool
in the development of a new class of end-fire absorber.
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