Proceedings of the 14th International Symposium on Space Terahertz Technology

Chris Walker† and John Payne‡, Editors
† Steward Observatory, University of Arizona
‡ National Radio Astronomy Observatory
Tucson, Arizona

April 22-24, 2003
Loews Ventana Canyon Resort
Tucson, Arizona

SOFIA SAFIR Herschel ALMA

AST/RO GTO TPF

Steward Observatory Radio Astronomy Lab
University of Arizona
Tucson, Arizona

National Radio Astronomy Observatory
Tucson, Arizona

Georgia Institute of Technology
Atlanta, Georgia

April, 2004
PREFACE

The fields of THz science and technology are now experiencing tremendous growth, both in the public and private sectors. Recent advances in theory, fabrication, and analytical tools permit for the first time the realization of devices, components, and systems that were only imagined just a short time ago. Much of this accelerated growth can be traced directly to the instrument requirements of space missions (e.g. Herschel). We will be benefiting from this work for years to come, both in future missions (e.g. SOFIA and SAFIR) and in enumerable remote sensing applications (spaceborne and terrestrial). THz science and technology is still in its infancy. The next decade should prove to be even more exciting and productive than the last!

The 14th International Symposium on Space TeraHertz Technology was held at the Loews Ventana Canyon Resort in Tucson, Arizona from April 22-24, 2004. There were a total of ∼125 engineers and scientists in attendance from around the world. There were 12 oral sessions and a 3-day long poster session. A total of 55 papers were presented in the oral sessions and 35 in the poster session, for a combined total of 90 papers. The number of contributions in each subject area were roughly as follows:

- Hot Electron Bolometers: 15
- SIS Mixers: 18
- Sources: 18
- Devices: 8
- Incoherent/Bolometers: 2
- Waveguide: 9
- Spectrometers: 5
- Systems: 10
- Optics: 5

The Symposium would not have been possible without the support of the NRAO Tucson staff (in particular Jennifer Neighbours) and the students of the Steward Observatory Radio Astronomy Laboratory (Chris Groppi, Dathon Golish, and Abby Hedden). We also wish to thank Dr. John Papapolymerou and Peter Kirby of the Georgia Institute of Technology for their help in organizing the conference and the IEEE MTT Society for their support. Finally, the Chairs thank the SOC, session chairs, presenters, and all participants for making the 14th International Symposium on Space TeraHertz Technology an enjoyable and rewarding experience. We look forward to seeing you all in the future.

Christopher K. Walker
John M. Payne
14th International Symposium on Space Terahertz Technology

Session 1: HEB MIXERS I

Chair: Sigfrid Yngvesson
University of Massachusetts at Amherst

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| 1.1. Review of HEB Heterodyne Detectors and Receiver Systems for the THz Range: Present and Future
Sigfrid Yngvesson
University of Massachusetts at Amherst | 1 |
| 1.2. Noise performance of NbN Hot Electron Bolometer mixers at 2.5 THz and its dependence on the contact resistance
| 1.3. Fabrication and Noise Measurement of NbTiN Hot Electron Bolometer Heterodyne Mixers at THz Frequencies
Pourya Khosropanah, Sven Bedorf, Sergey Cherednichenko, V. Drakinskiy, Karl Jacobs, Harald Merkel, Erik Kollberg
1Department of Microtechnology and Nanoscience, Microwave Electronics Laboratory, Chalmers University of Technology, Sweden
2KOSMA, I. Physikalisches Institut, University of Cologne, Germany | 20 |
| 1.4. Comparison of the Noise Performance of NbTiN and NbN Hot Electron Heterodyne Mixers at THz Frequencies
Harald F. Merkel, Pourya Khosropanah, Sergey Cherednichenko, Erik Kollberg
Microelectronics Department, Microwave Electronics Laboratory, Chalmers University of Technology, Sweden | 31 |

Session 2: SIS MIXERS I

Chair: Tony Kerr
National Radio Astronomy Observatory

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| 2.1. Superconducting Hot-Electron Bolometer Mixer for Terahertz Heterodyne Receivers
Alexei D. Semenov, Heinz-Wilhelm Häbers, Heiko Richter, Konstantin Smirnov, Gregory N. Gol’tsman, Natalia Kaurova, Boris M. Vornov
1DLR Institute of Space Sensor Technology and Planetary Exploration, Germany
2Moscow State Pedagogical University, Russia | 33 |
| 2.2. Sideband-Separating SIS Mixer For ALMA Band 7, 275-370 GHz
Stéphane Claude
Institut de Radio Astronomie Millimétrique, France | 41 |
| 2.3. Design Accuracy of the Resonance Frequency for the PCTJ SIS Mixer
Yasunori Fujii, Ken’ichi Kikuchi, Junji Inatani
1National Space Development Agency of Japan, Japan
2Nihon Tsushinki Co., Ltd., Japan | 52 |
2.4. Low noise SIS mixer for the band 1.1-1.25 THz of the Herschel space radio telescope

A. Karpov¹, D. Miller¹, F. Rice¹, J. Zmuidzinas¹, J. A. Stern², B. Bumble³, H. G. LeDuc²

¹California Institute of Technology
²Jet Propulsion Laboratory

2.5. Influence of Junction-Quality and Current Density on HIFI Band 2 Mixer Performance

R. Teipen¹, M. Justen¹, T. Tils¹, S. Glenz¹, C. E. Honingh¹, K. Jacobs¹, B. D. Jackson²,
T. Zijlstra¹, M. Kroug³

¹KOSMA, I. Physikalisches Institut, Universität zu Köln, Germany
²National Institute for Space Research (SRON), The Netherlands
³Dept. of Nanoscience, Faculty of Applied Sciences, Delft Univ. of Technology, The Netherlands

2.6. All-NbN SIS Mixers Using a Tuning Circuit with Two Half-Wavelength Distributed Junctions

Kansai Advanced Research Center, Communications Research Laboratory, Japan

Session 3: SOURCES I

Chair: John Payne

National Radio Astronomy Observatory

3.1. A 1600-1900 GHz Tunable Source

Neal Erickson, Ron Grosslein, John Wielgus, Vern Fath, I. Mehdi, J. Gill

¹Department of Astronomy, University of Massachusetts
²Jet Propulsion Laboratory

3.2. W Band MMIC Power Amplifiers for the Herschel HIFI Instrument

Robert R. Ferber¹, Todd C. Gaier¹, John C. Pearson¹, Lorene A. Samoska¹,
Mary Wells¹, April Campbell¹, Gerald Swift², Paul Yocom², K. T. Liao²

¹Jet Propulsion Laboratory, California Institute of Technology
²Northrop Grumman Space Technology (NGST)

3.3. Broadband Submillimeter Receiver and Source Development

Virginia Diodes Inc.

3.4. Design and Analysis of 500 GHz Hetero-structure Barrier Varactor Quintuplers

Mattias Ingvarson, Arne Øistein Olsen, Jan Stake

Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

3.5. 1400–1900 GHz Local Oscillators for the Herschel Space Observatory

John Ward, Frank Maiwald, Goutam Chattopadhyay, Erich Schlecht,
Alain Maestrini*, John Gill, Imran Mehdi

California Institute of Technology, Jet Propulsion Laboratory

*Now at the Observatoire de Paris
Session 4: DEVICES

Chair: Art Lichtenberger
University of Virginia

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. HgCdTe Photoconductive Mixers for 3-15 Terahertz</td>
<td>Albert Betz, Rita Boreiko, Yongdong Zhou, Jun Zhao, Yusuf Selame, Yong Chang, Renganathan Ashokan, Charlie Bucker, Sivalingam Sivananthan</td>
<td></td>
</tr>
</tbody>
</table>
| | 1Center for Astrophysics & Space Astronomy, University of Colorado
| | 2Microphysics Laboratory and Department of Physics, The University of Illinois at Chicago
| | 3Physics Institute of Wuerzburg, Germany |
| **4.2. Transferred Substrated Heterojunction Bipolar Transistors for Submillimeter Wave Applications** | Andy Fung, Lorene Samoska, Peter Siegel, M. Rodwell, M. Urteaga, V. Paidi, Roger Malik |
| | 1California Institute of Technology, Jet Propulsion Laboratory
| | 2Department of Electrical and Computer Engineering, Univeristy of California at Santa Barbara
| | 3RJM Semiconductor |
| **4.3. Novel Designs for Submillimeter Subharmonic and Fundamental Schottky Mixers** | Erich Schlecht, John Gill, Peter Siegel, John Oswald, Imran Mehdi |
| | Jet Propulsion Laboratory |
| **4.4. Design, Fabrication and Testing of Semi-conductor Tunable Antenna-coupled Intersubband Terahertz (TACIT) Detectors** | M. S. Sherwin, G. B. Serapiglia, Y. Dora, M. Hanson, A. C. Gossard, W. R. McGrath |
| | 1Institute for Quantum Engineering Science and Technology (iQUEST), University of California at Santa Barbara (UCSB)
| | 2Department of Electrical and Computer Engineering, USCB
| | 3Department of Physics, USCB
| | 4Department of Materials, UCSB
| | 5Submillimeter-wave superconductive sensors group, Jet Propulsion Laboratory |
| **4.5. SIR Chip for TELIS** | S. V. Shitov, P. A. Yagoubov, L. V. Filippenko, P. N. Dmitriev, O. V. Koryukin, A. B. Ermakov, R. W. M. Hoogeveen |
| | 1Institute of Radio Engineering and Electronics (IREE), Russian Academy of Sciences, Russia
| | 2National Institute for Space Research (SRON), The Netherlands |
| **4.6. Large RF Bandwidth Waveguide to Thinfil Microstrip Transitions on Suspended Membrane for Use in Silicon Micromachined Mixer Blocks at THz Frequencies** | J. W. Koo, Christian Drouet d’Aubigny, Chris Walker, Arthur W. Lichtenberger |
| | 1California Institute of Technology
| | 2Department of Astronomy and Steward Observatory, University of Arizona
| | 3University of Virginia |
Session 5: INCOHERENT/BOLOMETRIC DETECTORS
Chair: Harvey Moseley
NASA - Goddard Space Flight Center

5.1. Photon Counting vs Photon Integration at SubMM Waves
Boris S. Karasik¹, Andrew V. Sergeev²
¹Jet Propulsion Laboratory, California Institute of Technology
²Wayne State University

Session 6: WAVEGUIDE
Chair: John Papapolymerou
Georgia Institute of Technology

6.1. Single Chip, Beam Combining, Interferometric Detector for Submillimetre-wave Astronomy
E. Campbell¹, S. Withington¹, G. Yassin¹, C. Y. Tham¹, S. Wolfe², K. Jacobs²
¹Department of Physics, University of Cambridge, UK
²Department of Physics, University of Cologne, Germany

6.2. Measurements and Simulations of Overmoded Waveguide Components at 70-118 GHz, 220-330 GHz, and 610-720 GHz
G. A. Ediss
National Radio Astronomy Observatory

6.3. A Broadband Waveguide Thermal Isolator
J. L. Hesler¹, A. R. Kerr², N. Horner²
¹University of Virginia, Department of ECE
²National Radio Astronomy Observatory

6.4. Silicon Laser Micromachining for the Development of Planar Waveguide-Based THz Structures
Peter Kirby¹, John Papapolymerou¹, Christian D'Aubigny², Chris Walker²
¹School of Electrical & Computer Engineering, Georgia Institute of Technology
²Department of Astronomy, University of Arizona

6.5. Design of a Dual Polarization SIS Sideband Separating Receiver Based on Waveguide OMT for the 275-370 GHz Frequency Band
A. Navarrini, M. Carter
Institut de Radioastronomie Millimétrique (IRAM), France

6.6. Symmetric Waveguide Orthomode Junctions
E. J. Wollack¹, W. Grammer²
¹Laboratory for Astronomy and Astrophysics, NASA/Goddard Space Flight Center
²National Radio Astronomy Observatory
Session 7: SPECTROMETERS
Chair: Rudolf Schieder
Physics Institute, University of Cologne

7.1. Optical Methods for Spectral Analysis of Future Heterodyne Instruments
R. Schieder
Physics Institute, University of Cologne, Germany

7.2. A Correlator Chip for Spaceborne Radiometry
Constantin Timoc
Spacebore Inc., La Canada, California

Session 8: SYSTEMS
Chair: Chris Walker
University of Arizona

8.1. Deployment of TREND – A Low Noise Receiver User Instrument at 1.25 THz to 1.5 THz for AST/RO at the South Pole
Eyal Gerech1, Sigfrid Yngvesson2, John Nicholson1, Yan Zhuang1, Fernando Rodriguez Morales1, Xin Zhao1, Dazhen Gu1, Richard Zannoni1, Michael Coulombe1, Jason Dickinson1, Thomas Goyette1, Bill Goveart1, Jerry Waldman1, Pourya Khosropanah1, Christopher Groppi3, Abigail Hedden1, Dathon Golish3, Christopher Walker3, Jacob Koo4, Richard Chamberlin5, Antony Stark6, Chirstopher Martin6, Robert Stupak6, Nicholas Tothill6, Adair Lane6

1University of Massachusetts at Amherst
2Submillimeter Wave Technology Laboratory, University of Massachusetts at Lowell
3Chalmers University of Technology, Sweden
4Department of Astronomy and Steward Observatory, University of Arizona
5California Institute of Technology
6Smithsonian Astrophysical Observatory

8.2. Heterodyne Array Development at the University of Arizona
C. Groppi1, C. Walker2, C. Kulesa2, G. Narayanan1, K. Jacobs1, U. Graf2, R. Schieder2, J. Koo4

1SORAL, University of Arizona
2University of Massachusetts at Amherst
3University of Cologne, Germany
4California Institute of Technology

8.3. TELIS – Development of a New Balloon-Borne THZ/Submm Heterodyne Limb Sounder

1National Institute for Space Research (SRON), The Netherlands
2Remote Sensing Technology Institute, DLR, Germany
3Institute for Space Sensor Technology and Planetary Exploration, DLR, Germany
4Moscow State Pedagogical University, Russia
5Institute of Radio Engineering and Electronics (IREE), Russia
6Rutherford Appleton Laboratory (RAL), UK
8.4. Heterodyne Instrumentation Development for the Caltech Submillimeter Observatory

Jacob W. Kooi, Attila Kovacs, T. G. Phillips, J. Zmuidzinas
California Institute of Technology

8.5. CO(9-8) in Orion

Simon J. E. Radford¹, Ray Blundell², Scott Paine³, Hugh Gibson³, Dan Marrone³
¹National Radio Astronomy Observatory
²Smithsonian Astrophysical Observatory

8.6. Quasi-Optics for 640 GHz SIS Receiver of International-Space-Station-Borne Limb-Emission Sounder SMILES

Masumichi Seta¹, Axel Murk², Takeshi Manabe¹, Junji Inatani³, Richard Wylde⁴,
Takeshi Miura³, Toshiyuki Nishibori³
¹Communications Research Laboratory
²Institute of Applied Physics, University of Bern, Switzerland
³National Space Development Agency, Japan
⁴Thomas Keating Ltd., UK

8.7. Meeting the Optical Requirements of Large Focal-Plane Arrays

Antony A. Stark
Smithsonian Astrophysical Observatory

Session 9: SIS MIXERS II

Chair: Karl Jacobs
University of Cologne

9.1. Influence of Temperature Variations on the Stability of a Submm Wave Receiver

Baryshev, A.¹,²,³ R. Hesper¹,²,³ G. Gerlofsma¹,²,³, M. Kroug⁴, W. Wild¹,²,³
¹Netherlands Research School for Astronomy (NOVA), The Netherlands
²Space Research Organization Netherlands (SRON), The Netherlands
³University of Groningen (RuG), The Netherlands
⁴DIMES, Delft University of Technology, The Netherlands

9.2. Quasiparticle Mixing and Josephson Electrodynamics in Non-uniform Parallel Junction Arrays

F. Boussaha, M. Salez, Y. Delorme, F. Dauplay, A. Feret, K. Westerberg, B. Lecomte
LERMA, Observatoire de Paris, France

9.3. Investigation of the Performance of 700 GHz Finline Mixers

P. Grimes¹, P. Kittard¹, G. Yassin¹, S. Withington¹, K. Jacobs²
¹Cavendish Laboratory, UK
²KOSMA, I. Physikalisches Institut, University of Cologne, Germany

9.4. Measurement of Gain Compression in SIS Mixer Receivers

A. R. Kerr¹, J. Effland¹, S.-K. Pan¹, G. Lauria¹, A. W. Lichtenberger¹, and R. Groves¹
¹National Radio Astronomy Observatory
²University of Virginia

9.5. Investigations into the Effect of Reflections at the RF and LO Ports of an SIS Mixer

Nicholas D. Whyborn
National Institute for Space Research (SRON), The Netherlands
Session 10: HEB MIXERS II
Chair: Johathan Kawamura
Jet Propulsion Laboratory

10.1. Development of NbN Terahertz HEB Mixer Devices and Films
Eyal Gerecht, Ashok K. Bhupathiraju, John Nicholson, Dazhen Gu, Yan Zhuang,
Fernando Rodriguez Morales, Xin Zhao, Richard Zannoni, Sigfrid Yngvesson
1National Institute of Standards and Technology
2Department of Electrical and Computer Engineering, University of Massachusetts at Amherst

10.2. Gain Bandwidth and Noise Temperature of NbTiN HEB Mixer
Gregory Gortsman, Matvey Finkel, Yuriy Vachtomin, Sergey Antipov,
Vladimir Drakinski, Natalia Kaurova, Boris Voronov
Moscow State Pedagogical University, Russia

10.3. A 1.5 THz Hot-Electron Bolometer Mixer Operated by a Planar Diode-Based
Local Oscillator
Jonathan Kawamura, C.-Y. Edward Tong, Denis Meledin, Raymond Blundell,
Neal Erickson, Imran Mehdi, Gregory Gortsmann
1Jet Propulsion Laboratory, California Institute of Technology
2Harvard-Smithsonian Center for Astrophysics
3Department of Astronomy, University of Massachusetts
4Physics Department, Moscow State Pedagogical University, Russia

10.4. Broadband Millimeter-Wave Bolometric Mixers Based on Ballistic Cooling in
a Two-Dimensional Electron Gas
Mark Lee, L. N. Pfeifer, K. W. West
Bell Laboratories, Lucent Technologies

10.5. Bistability in NbN HEB Mixer Devices
Yan Zhuang, Dazhen Gu, Sigfrid Yngvesson
Department of Electrical and Computer Engineering, University of Massachusetts at Amherst

Session 11: SOURCES II
Chair: Imran Mehdi
Jet Propulsion Laboratory

11.1. Heterostructure Barrier Varactor Frequency Triplers to 220 – 325 GHz
Yiwei Duan, Qun Xiao, Jeffrey L. Hesler, Thomas W. Crowe
Department of Electrical and Computer Engineering, University of Virginia

11.2. THz-range Unipolar Ballistic Tunnel-Emission Transit-Time Oscillators
J. East, Z. S. Gribnikov, N. Z. Vagidov, V. V. Mitin, G. I. Haddad
1Department of ECE, Wayne State University
2Department of EECS, University of Michigan
11.3. F-Band (90-140 GHz) Uni-Traveling-Carrier Photodiode Module for a Photonic Local Oscillator

H. Ito¹, T. Ito¹, Y. Muramoto¹, T. Furuta¹, T. Ishibashi²
¹NTT Photonics Laboratories, NTT Corporation, Japan
²NTT Electronics Corporation, Japan

11.4. Optical Far-IR Wave Generation – An ESA Review Study

B. Leone¹, V. Krozer², M. Feiginov³, H. Roskos³, H. Quast³, T. Löffler³, G. Loata⁴,
G. Döhler⁵, P. Kiesel⁵, M. Eckardt⁵, A. Schwahnhäußer⁵, T. O. Klaassen⁶, P. Lugli⁷
¹ESA Directorate of Technical and Operational Support, ESTEC, The Netherlands
²Technical University of Darmstadt, Germany
³University of Frankfurt, Germany
⁴University of Erlangen, Germany
⁵University of Rome, Italy
⁶Delft University of Technology, The Netherlands
⁷University of Rome, Italy

11.5. Amplitude Noise in a Photomixer Using a UTC-PD in the 100 GHz Band

T. Noguchi¹, A. Ueda¹, H. Iwashita¹, S. Takano¹, Y. Sekimoto¹, M. Ishiguro¹,
T. Ishibashi²*, H. Ito², T. Nagatsuma¹
¹Nobeyama Radio Observatory, Japan
²NTT Photonics Laboratory, NTT Corporation, Japan
³NTT Microsystem Integration Laboratories, NTT Corporation, Japan
*Present Affiliation: NTT Electronics Corporation

Session 12: OPTICS
Chair: Eric Mueller
Coherent Inc.

12.1. Propagating Partially Coherent THz Fields Using Non-Orthogonal Over-Complete Basis Sets

R. H. Berry, S. Withington, M. P. Hobson, G. Yassin
Cavendish Laboratory, University of Cambridge, UK

12.2. Experimental Verification of Electromagnetic Simulations of a HIFI Mixer Sub-Assembly

Willem Jellema¹, Paul Wesselius¹, Stafford Withington¹, Ghassan Yassin², J. A. Murphy³, C. O'Sullivan³, N. Trappe³, T. Peacocke³, Bruno Leone⁴
¹National Institute for Space Research (SRON), The Netherlands
²Cavendish Laboratory, University of Cambridge, UK
³National University of Ireland Maynooth (NUIM), Ireland
⁴UK Astronomy Technology Center (UKATC), UK
⁵European Space Agency (ESA/ESTEC), The Netherlands

12.3. A Novel Procedure for Designing Band-pass Filters using FSS Structures

Ge Wu¹, Volkert Hansen¹, Ernst Kreysa², Hans-Peter Gemuend²
¹Chair of Electromagnetic Theory, University Wuppertal, Germany
²Max Planck Institute for Radioastronomy, Germany
13.1. A Hot-Spot Model for Membrane-Based HEB Mixer
Jean Baubert1,2, H. Merkel1, M. Salez1, P. Khosropanah1
1LERMA, Observatoire de Paris, France
2MC2, Chalmers University, Sweden

13.2. Noise Performance of Spiral Antenna Coupled HEB Mixers at 0.7 THz and 2.5 THz
K. V. Smirnov1, Yu. B. Vachtomin1, S. V. Antipov1, S. N. Maslennikov1, N. S. Kaurova1,
V. N. Drakinsky1, B. M. Voronov1, G. N. Gol'tsman1, A.D. Semenov1,
H. Richter2, H.-W. Hubers2
1Moscow State Pedagogical University, Russia
2DLR Institute of Space Sensor Technology, Germany

13.3. Improved NbN phonon cooled hot electron bolometer mixers
M. Hajenius1,2, J. J. A. Baselmans2, J. R. Gao1,2, T. M. Klapwijk1, P. A. J. de Korte2,
B. Voronov1, and G. Gol'tsman3
1Department of Nanoscience, Delft University of Technology, The Netherlands
2Space Research Organization Netherlands, The Netherlands
3Moscow State Pedagogical University, Russia.

13.4. NbAu Bilayer Diffusion Cooled HEB
Harald F. Merkel, P. Khosropanah, S. Cherednichenko, T. Ottoson, J. Baubert, E. Kollberg
Department of Microtechnology & Nanoscience, Chalmers University of Technology, Sweden

13.5. Transition-Edge Operation of Tantalum Diffusion-Cooled Hot-Electron Bolometers
Anders Skalare, William R. McGrath, Bruce Bumble, Henry G. LeDuc
Jet Propulsion Laboratory, California Institute of Technology

13.6. Impedance and Bandwidth Characterization of NbN Hot Electron Bolometric Mixers
F. Rodriguez-Morales, Sigfrid Yngvesson
Department of Electrical and Computer Engineering, University of Massachusetts

13.7. Sideband-Separating SIS Mixer at 110 GHz for the Measurement of Atmospheric Ozone
Shin'ichiro Asayama1, Takashi Noguchi2, and Hideo Ogawa1
1Department of Earth and Life Sciences, College of Integrated Arts and Sciences, Japan
2Nobeyama Radio Observatory, Japan
13.8. Repeatability and Reliability of the 640 GHz SIS Mixer for JEM/SMILES 442
K. Kikuchi, Y. Fujii, W.-L. Shan and J. Inatani
1National Space Development Agency of Japan, Japan
2Nihon Tushinki Co., Ltd., Japan
3Communications Research Laboratory, Japan

13.9. Observation of an Anomalous IF Peak at High Bias Voltage in 660-GHz SIS Mixers 444
M. J. Wang¹, W. L. Shan¹, W. Zhang¹, H. W. Cheng¹, T. Noguchi², S. C. Shi²,
Y. Irimajiri³, T. Manabe³
1Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan
2Purple Mountain Observatory, China
3Nobeyama Radio Observatory, NAOJ, Japan
4Communications Research Laboratory, Japan

13.10. SuperMix Aided Design of SIS Tunnel Junction Heterodyne Mixers 446
Attila Kovacs, Jacob W. Kooi, T. G. Phillips, J. Zmuidzinas
California Institute of Technology

13.11. Development of the HIFI Band 3 and 4 Mixer Units 447
G. de Lange¹, B. D. Jackson¹, M. Eggens¹, H. Golstein¹, W. M. Laauwen¹, L. de Jong¹,
S. Kikken¹, C. Pieters¹, H. Smit¹, and D. Van Nguyen¹, M. Kroug², T. Zijlstra², and T. M. Klapwijk²
1SRON National Institute for Space Research, The Netherlands
2Department of Nanoscience, Faculty of Applied Science,
Delft University of Technology, The Netherlands

Receiver of IRAM PdB Interferometer
A. Navarrini* and B. Lazareff
Institut de Radio Astronomie Millimetrique, France
*Present Address: Radio Astronomy Lab, University of California

Waveguide SIS Mixer with a 3-Standard De-embedding Method
W. Zhang¹, C.-Y. Edward Tong² and S.C. Shi²
1Purple Mountain Observatory, Chinese Academy of Sciences, China
2Harvard-Smithsonian Center for Astrophysics

Waves and Their Comparison
V. Belitsky, C. Risacher, M. Pantaleev, V. Vassilev
Group for Advanced Receiver Development, Onsala Space Observatory,
Chalmers University of Technology, Sweden

SOURCES

13.15. Local Oscillator Systems for (Sub)millimeter Spectroscopy 476
A. Emrich, S. Andersson, J. Embretsen
Omnisys Instruments AB, Sweden
13.16. Equivalent Circuit for Photomixing in Resonant Laser-Assisted Field Emission

M. J. Hagmann¹, M. S. Mousa², M. Brugat³, E. P. Sheshin⁴, A. S. Baturin⁴
¹Deseret Electronics Research Corporation,
²Department of Physics, Mu'tah University, Jordan
³Image Instrumentation Inc.,
⁴Moscow Institute of Physics and Technology, Russia

13.17. Effect of Finite Spectral Width on Photomixing in Resonant Laser-Assisted Field Emission

M. J. Hagmann
Deseret Electronics Research Corporation

13.18. TeraHertz Quantum Cascade Laser Based on LO-Phonon-Scattering Assisted Depopulation

Qing Hu¹, Benjamin S. Williams¹, Hans Callebaut¹, Sushil Kumar¹, John L. Reno²
¹Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology
²Sandia National Laboratories, Dept 1123, MS 0601

13.19. Terahertz Backward Wave Oscillator Development

Lawrence Ives¹, David Marsden¹, Malcolm Caplan¹, Carol Kory¹, Jeff Neilson¹,
S. Schwartzkopf²
¹Calabazas Creek Research, Inc.
²RWI, Inc.

13.20. Design and Operational Considerations for Robust Planar GaAs Varactors: A Reliability Study

Frank Maiwald, Erich Schlecht, John Ward, Robert Lin, Rosa Leon, John Pearson, Imran Mehdi
Jet Propulsion Laboratory, MS 168-314

13.21. A Design Theory for a Terahertz-Frequency Quantum Oscillator that Operates in the Positive Differential Resistance Region

Dwight Woolard², Peiji Zhao³, H. L. Cui³
¹US Army Research Lab., ARO
²Department of Electrical and Computer Engineering, NCSU
³Department of Physics and Engineering Physics, Stevens Institute of Tech

13.22. A Multi-Subband Design Theory for a Terahertz-Frequency Double Barrier Quantum Well Oscillator

Peiji Zhao¹, D. L. Woolard²
¹North Carolina State University
²Army Research Laboratory, Army Research Office
DEVICES

13.23. Beam Lead Fabrication for Submillimeter-wave Circuits Using Vacuum Planarization
R. B. Bass¹, J. C. Schultz¹, A. W. Lichtenberger¹, J. W. Koo², C. K. Walker³
¹Department of Electrical and Computer Engineering, University of Virginia
²Division of Physics, Mathematics, and Astronomy, California Institute of Technology
³Department of Astronomy, University of Arizona

13.24. Wide Band Cryogenic IF Amplifiers for ALMA and Herschel Receivers
Isaac López-Fernández, Carmen Diez, Juan Daniel Gallego, Alberto Barcia
Centro Astronómico de Yebes, OAN-IGN, Spain

INCOHERENT/BOLOMETER DETECTORS

13.25. Investigation of Superconducting Transition in the Molybdenum-Copper Thin Film Structure Showing the Proximity Phenomenon with the Purpose of Constructing TES Bolometer
S. A. Kovtonyuk, A. G. Kovalenko, A. A. Chebotarev, A. N. Vystavkin
Institute of Radioengineering and Electronics of RAS, Russia

WAVEGUIDE

13.26. Full-Waveguide Band Orthomode Transducer for the 3mm and 1mm Bands
Gopal Narayanan, Neal R. Erickson
Department of Astronomy, University of Massachusetts

13.27. Precision Measurements of the Properties of Thin-film Superconducting Microstrip Lines at 100-500 GHz
Anastasios Vayonakis¹, Alexey Goldin¹, Henry Leduc², Chiyan Luo³, Jonas Zmuidzinas¹
¹California Institute of Technology
²Jet Propulsion Laboratory
³Massachusetts Institute of Technology

13.28. Propagation in Lossy and Superconducting Cylindrical Waveguides
Ghassan Yassin, Choy Yoong Tham, Stafford Withington
Cavendish Laboratory, University of Cambridge, UK

SPECTROMETERS

13.29. Autocorrelation Spectrometers for (Sub)millimetre Spectroscopy
A. Emrich, S. Andersson, J. Embretsen, J. Dahlberg, L. Landén, C. Tegnander
Omnisys Instruments AB, Sweden
13.30. Chip Set for Autocorrelation Spectrometer Applications
L. Landén1,2, J. Dahlberg1, A. Emrich1
1Omnisys Instruments AB, Sweden
2Chalmers University of Technology, MEL, Sweden

13.31. THIS — A Quantum-Cascade-Laser Pumped Mid-Infrared Heterodyne Receiver
Daniel Wirtz1, G. Sonnabend2, V. Vetterle1, M. Olbrich1, R. Schieder1
1I. Physikalisches Institut, Universität zu Köln, Germany
2NASA Goddard Space Flight Center

13.32. Heterodyne Receiver Requirements for the Single Aperture Far-Infrared (SAFIR) Observatory
D. J. Benford1, Jacob Kooi2
1NASA — Goddard Flight Center, Code 685
2Caltech, MC 320-47

13.33. Cartridge-type receiver system on ASTE
Masahiro Sugimoto1, Yutaro Sekimoto1, Sozo Yokogawa1, Takeshi Okuda1,
Ken'ichi Tatematsu1, Takashi Noguchi1, Kotaro Kohno1, Hideo Ogawa1,
Kimihiro Kimura1
1National Astronomical Observatory of Japan, Japan
2Institute of Astronomy, The University of Tokyo, Japan
3Department of Earth and Life Sciences, College of Integrated Arts and Sciences, Japan

13.34. Current Status of the Antarctic Submillimeter Telescope and Remote Observatory
Kecheng Xiao1, Antony A. Stark1, Adair P. Lane1, Christopher L. Martin1,
Wilfred M. Walsh1, Christopher K. Walker2, Jacob W. Kooi3
1Smithsonian Astrophysical Observatory
2University of Arizona
3California Institute of Technology

OPTICS

13.35. Efficient Side-band Ratio Measurement of a Submm Wave Mixer Using a Fourier Transform Spectrometer
A. Baryshev1,2,3, R. Hesper1,2,3, G. Gerlofsma1,2,3, M. Kroug3, W. Wild1,2,3
1Netherlands Research School for Astronomy (NOVA), The Netherlands
2Space Research Organization Netherlands (SRON), The Netherlands
3University of Groningen (RuG), The Netherlands

13.36. Transmission and Reflection Characteristics of Slightly Irregular Wire-Grids for Arbitrary Angles of Incidence and Grid Rotation
Takeshi Manabe1, Axel Murk2
1Communications Research Laboratory, Japan
2Institute of Applied Physics, University of Berne, Switzerland