Program in detail

Sunday, April 27, 2014

13:00 – 19:30 Registration Desk open, the Main Hall

14:00 - 16:30 TERADEC

17:00 – 19:30 Welcome party, the Main Hall

Monday, April 28, 2014

8:30 - 9:30 Registration

9:30 – 10:05 Symposium opening: Gregory Goltsman, Teunis M. Klapwijk

Chair: Boris Karasik

10:05 – 10:30 Invited Talk: "SAFARI new and improved - extending the capabilities of SPICA's Imaging Spectrometer" - Dr. Gerhard de Lange, SRON

10:30 - 11:30 <u>Session 1</u>: Systems & receivers I

Paper	Abstract Title	Presenter
1-1	Submillimeter-Wave Radiometer and Spectrometers using	Goutam Chattopadhyay
	Cryogenically Cooled HEMT Amplifier Front-Ends	
1-2	Progress on the upGREAT heterodyne array receivers for the	Christophe Risacher
	SOFIA telescope	
1-3	Development of a Terahertz Superconducting Imaging Array	Sheng-Cai Shi
	(TeSIA)	
1-4	Development of a Total-Power Radiometer comprising a 340 GHz	Simon Rea
	High-Resolution Sideband-Separating Schottky Receiver	

11:30 - 11:45 Coffee & Tea Break

Chair: Doris Maier

11:45 - 12:30 Session 2: Sources I

Paper	Abstract Title	Presenter	
	Phase-locking of a 4.7 THz quantum cascade laser based on a harmonic super-lattice mixer	JR. Gao, Darren Hayton, D. Pavelyev	
	Progress towards a Room-Temperature 4.7 THz Multiplied Local Oscillator Source to Enable Neutral Oxygen Observation	Jose Siles	
2-3	A 4.7 quantum-cascade lasers as local oscillator for the GREAT heterodyne spectrometer on SOFIA	Heiko Richter	

12:30 - 14:00 Lunch Break

Meeting of ISSTT Steering Committee (continue on Tuesday if necessary)

Chair: Alexej Semenov

14:00 – 14:25 Invited Talk: "SpaceKIDs - The development of Kinetic Inductance Detectors for Space Based Applications" - Dr. Simon Doyle, Cardiff University

14:25 - 15:40 Session 3: Direct detectors

Paper	Abstract Title	Presenter
3-1	A stacked wafer design for hexagonal arrays of TES bolometers	Gerhard de Lange
3-2	A Resonance Cold-Electron Bolometer with a Kinetic Inductance Nanofilter	Leonid Kuzmin
3-3	A planar frequency selective bolometric array at 350 GHz	Alexander Sobolev
3-4	Power Load Dependencies of Cold Electron Bolometer Optical Response at 350 GHz	Mikhail Tarasov
3-5	Response of the antenna coupled TES with High-Frequency Readout to 0.65 THz radiation	Artem Kuzmin

15:40 – 16:00 Coffee & Tea Break

Chair: Sergey Ryabchun

16:00 – 16:25 Invited Talk: "Superconducting Metamaterials" - Dr. Alexey Ustinov, Karlsruhe Institute of Technology

16:25 - 17:10 Session 4: Optics

Paper	Abstract Title	Presenter
4-1	Cryogenic resonator spectrometer for satellite antennas reflectivity investigation at millimeter and terahertz bands	Evgeny Serov
4-2	Capillary quasioptical highpass filter	Artem Chekushkin
4-3	Development of the Wide FoV Cold Optics for Millimeter and Submillimeter Wave Observation	Shigeyuki Sekiguchi

^{*17:25 –} Bus boarding

^{*18:00 – 20:00} Tour to Radio Physics Lab and Technological Center of Moscow State Pedagogical University (optional)

Tuesday, April 29, 2014

9:00-9:30 Registration

Chair: Raymond Blundell

9:30 – 9:55 Invited Talk: "Millimetron: The next FIR/mm Space Observatory" - Dr. Thijs de Graauw, Astro Space Centre of P.N. Lebedev Physical Institute, RAS

9:55 – 11:10 Session 5: THz coherent detectors: HEB I

Paper	Abstract Title	Presenter
5-1	Optimization of the intermediate frequency bandwidth in the THz HEB mixers	Alexey Semenov
5-2	_	Sergey Cherednichenko
5-3	Performance of a 4.7 THz waveguide HEB mixer for SOFIA's upGREAT	Denis Büchel
5-4		Daniel Cunnane, Boris Karasik
5-5	Performance of twin-slot antenna coupled NbN hot electron bolometer mixers at frequencies ranging from 1.4 to 4.7 THz	

11:10 - 11:30 Coffee & Tea Break

Chair: Victor Belitsky

11:30 – 12:30 <u>Session 6</u>: Systems & receivers II

Paper	Abstract Title	Presenter
6-1	Testing of 166 to 664 GHz receivers prototypes based on discrete planar Schottky diodes for ICI onboard MetOp-SG	Mostafa Benzazaa
6-2	Scientific Requirements for Next Generation Space Terahertz Astronomy Missions	lgor Zinchenko
6-3	THz photometers for solar flare observations from space	Pierre Kaufmann
6-4	Atmospheric Profiling Synthetic Observation System at THz Wave Band	Qijun Yao

12:30 - 14:00 Lunch Break

Chair: Teunis Klapwijk

14:00 – 14:25 Invited Talk: "Large format, background limited arrays of Kinetic Inductance Detectors for sub-mm astronomy" - Dr. Jochem Baselmans , SRON 14:25 - 15:40 Session 7: Novel devices & measurements

Paper	Abstract Title	Presenter	
7-1	Normal Metal HEB Detector with Johnson Noise Thermometry Readout	Boris Karasik	
7-2	Photon Statistics for Space Terahertz Astronomy	Hiroshi Matsuo	
7-3	Frequency multiplication in a distributed array of SIS junctions	Bhushan Billade	
7-4	Terahertz detectors based on the room temperature Nb5N6 microbolometers	Jian Chen	
7-5	Photothermoelectric Response in Asymmetric Carbon Nanotube Devices Exposed to Sub-THz Radiation	Georgy Fedorov	

15:40 Coffee & Tea Break

Chair: Gregory Goltsman

15:40 – 17:40 Poster session

Poster	First name	Last name	Title			
1-c - THz	1-c - THz coherent detectors: Schottky diodes					
1-b - TH	coherent de	tectors: SIS				
1	Edward	Tong	Wideband Receiver Upgrade for the Submillimeter Array			
2	Patrick	Pütz	First mixer prototype results for Band L			
			(455-495 GHz) of CHAI			
3	Patrice	Serres	Characterization of the IF output impedance of SIS mixers			
4	Parisa	Yadranjee	SIS Tunnel Junction's Specific Capacitance Direct			
		Aghdam	Measurement			
5	Andrey	Khudchenko	Image Rejection Ratio of 2SB SIS Receivers			
6	Hawal	Rashid	Improved Quadrature RF Hybrid for 2SB and Balanced THz			
			Receivers			
7	Konstantin	Kalashnikov	Development of Phase Lock Loop based on Harmonic Phase			
			Detector			

Poster	First name	Last name	Title			
1-a - TH	1-a - THz coherent detectors: HEB					
8	Gregory	Gay	Design, fabrication and measurement of a membrane based quasi-optical THz HEB mixer			
9	Tatsuya	Soma	Wide RF band mixer-block design for waveguide-type HEB mixer			
10	Yury	Lobanov	Development of a 30 THz Heterodyne Receiver Based on a Hot-Electron-Bolometer Mixer			
2 -Direct	Detectors					
11	Jing	Li	Development of an 8×8 Microwave Kinetic Inductance Detector Array at 850 μm			
12	Masato	Naruse	Superconducting on-chip spectrometers at sub-millimeter wavelength			
13	Mikhail	Patrashin	Zero bias GaAsSb/InAlAs/InGaAs tunnel diodes for MMW-THz detection			
14	Wen	Zhang	Characterization of Ti superconducting transition edge sensors			
15	Timothe	Faivre	Experimental study of a Josephson junction based thermometer and its possible application in bolometry			
16	Alexander	Shurakov	A Microwave Pumped HEB Direct Detector Using a Homodyne Readout Scheme			
3 - Syste	ms & Receive	ers				
17	Alexander	Shurakov	1200 GHz receiver front-end for Sub-millimetre Wave Instrument for the JUICE mission			
18	Olivier	Auriacombe	Laboratory Based Terahertz Spectroscopy for Ice Desportion Studies of the Interstellar Medium			
19	Victor	Belitsky	Dual Band MM-Wave Receiver for Onsala 20m Antenna			
20	Fabien	Defrance	Heterodyne measurements at 2.6THz of the HEB mixer for the balloon experiment CIDRE			
21	Weidong	Hu	The 220 GHz stepped-frequency Imaging Radar			
22	-	-	-			
23	Grigoriy	Bubnov	Search for New Sites for THz Observations in Eurasia			

Poster	First name	Last name	Title			
4 - NhN f	 <mark>ilm technolo</mark>	gv				
	The state of the s					
24	Sascha	Krause	Deposition of high-quality ultra-thin NbN films at ambient temperatures			
25	Alexey	Pavolotsky	Study of NbN ultra-thin films for THz hot-electron bolometers			
5 – Sourc	es					
26	Andrey	Kaveev	Terahertz Emission from Silicon Nanostructures Heavily Doped with Boron			
27	Ion	Oprea	Monolithically integrated 440 GHz doubler using Film-Diode (FD) technology			
28	Zhe	Chen	A Schottky Diode Frequency Multiplier Chain at 380 GHz for a gyro-TWA Application			
29	Yoshihisa	Irimajiri	Phase-locking of a 3.1THz quantum cascade laser to terahertz reference generated by a frequency comb			
6 – Optic	s					
30	Arvid	Hammar	Spline Feed Horns for the STEAMR Instrument			
31	Bertrand	Thomas	1.9-2.5 THz and 4.7 THz electroformed smooth-wall spline feedhorns for the HEB mixers of the upGREAT instrument onboard SOFIA aircraft			
32	Hiroaki	Imada	Condition of Optical Systems Independent of Frequency for Wide Filed-of-View Radio Telescopes			
33	Takafumi	Kojima	Design and Loss Measurement of Substrate Integrated Waveguides at Terahertz Frequencies			
7 - Back-	7 - Back-ends: readout & signal processing					
34	Anton	Artanov	The operation of SIS mixer as up- and down-convertor at low frequencies for frequency multiplexing.			
35	Kenichi	Karatsu	Development of Superconducting Low Pass Filter for Ultra Low Noise Measurement System of Microwave Kinetic Inductance Detector			

Poster	First name	Last name	Title
8 - Novel	devices & m	easurements	
36	Boon Kok		A Planar Superconducting Phase Switch for Polarization Modulation
37	Edward	Tong	A Digital Terahertz Power Meter Based on an NbN Thin Film

^{*17:40 –} Bus boarding OR walk to IRE (~15 minutes)

^{*18:00 – 19:00} Tour to IRE (Kotel'nikov Institute of Radio Engeneering and Electronics, RAS) (optional)

^{19:00 –} Bus boarding at IRE or at the Symposium site

^{19:30 – 22:00} Conference dinner

Wednesday, April 30, 2014

9:00 – 9:30 Registration

Chair: Patrick Pütz

- 9:30 9:55 Invited Talk: "The Greenland Telescope" Dr. Raymond Blundell , Smithsonian Astrophysical Observatory
- 9:55 10:10 Special Talk "Radioastron" Dr. Yury Kovalev, Astro Space Centre of P.N. Lebedev Physical Institute, RAS
- 10:10 11:10 Session 8: THz coherent detectors: HEB II & SIS mixers

Paper	Abstract Title	Presenter
8-1	NbN Hot-Electron Bolometer Mixer Operation at 3.8 THz	Ivan Tretyakov
8-2	Superconducting Integrated Receiver with HEB-Mixer	Nickolay Kinev
8-3	High-quality NbN-MgO-NbN SIS junctions and integrated circuits for THz applications	Valery Koshelets
8-4	Fully integrated sideband-separating Mixers for the NOEMA receivers	Doris Maier

11:10 - 11:30 Coffee & Tea Break

Chair: Bertrand Thomas

11:30 – 12:00 Session 9: Back-ends: readout & signal processing

Paper	Abstract Title	Presenter
	SIS Frequency Multiplexers and RF-to-DC converters for Frequency Division Multiplexed TES Read-out	Gerhard de Lange
9-2	Experimental Study of Superconducting Microstrip Travelling-wave Parametric Amplifiers	Wenlei Shan

12:00 – 12:30 <u>Session 10</u>: Sources II

Paper	Abstract Title	Presenter
10-1	High Power Solid-State THz Source Development	Jeffrey Hesler
	4-Pixel Frequency Multiplied Source for High-Resolution heterodyne Array receivers at 1.9 THz	Imran Mehdi

12:30 - 14:00 Lunch Break

Chair: Imran Mehdi

14:00 – 14:25 Invited Talk: "The SubMM Wave Instrument on JUICE" - Dr. Paul Hartogh, Max Planck Institute for Solar System Research

14:25 – 15:25 <u>Session 11</u>: THz coherent detectors: Schottky mixers

Paper	Abstract Title	Presenter
11-1	Schottky-structures for Space THz Technologies	Oleg Cojocari
11-2	THz Schottky Diode MMICs for Astronomy and the Physics of the Atmosphere	Lina Gatilova
11-3	Sub-millimeter-wave balanced mixers and multipliers at the 5th harmonic	Hugh Gibson
11-4	Schottky diode based components for TeraSCREEN	Hui Wang

- 15:25 15:40 <u>Session 12</u> (optional): Announcements & conference closing: Gregory Gol'tsman
- 15:40 16:00 Coffee & Tea Break
- * 16:10 Bus boarding
- * 17:00 19:00 Tour to IKI (Space Research Institute, RAS) (optional)
- * 19:00 21:00 Entertainment (optional)