5577 201 C

30th International Symposium on Space Terahertz Technology

Proceedings Book

15-17 April 2019 Gothenburg, Sweden

Onsala Space Observatory, 25m telescope - photo J. Bodell

Contents

Sponsors	2
Committees	7
Technical Program	8
Monday, April 15, 2019	9
Tuesday, April 16, 2019	13
Wednesday, April 17, 2019	15
Proceeding Contributions	17
Monday, April 15, 2019	18
Session I. Instruments, Devices and Technologies for Small Satellites	18
Session II. Schottky Receivers and Technologies	25
Session III. SIS Receivers and Mixers	32
Session IV. THz sources	36
Poster Session	41
Tuesday, April 16, 2019	162
Session V. SIS Devices and Receivers	162
Session VI. Future Missions and Projects - I	171
Session VII. THz Optics and Antennas	182
Session VIII. HEBs and KIDs	186
Session IX. Future Missions and Projects - II	194
Wednesday, April 17, 2019	202
Session X. Future Missions and Projects - III	202
Session XI. QCL THz Sources	220
Session XII. Radars, Systems, Backend	225
Session XIII. Novel Devices and Technologies	235

List of Registered Symposium Participants

 $\mathbf{240}$

Sponsors

We greatly appreciate the support from our industrial sponsors:

Virginia Diodes, Inc. www.vadiods.com

Contributing Sponsors:

Keysight Technologies www.keysight.com

Rohde & Schwarz www.rohde-schwarz.com

Wasa Millimeter Wave AB

UNMATCHED DYNAMIC RANGE. UNMATCHED PERFORMANCE.

VDI's Mini VNAX modules are one-quarter the volume of standard modules making them well suited for probe station and antenna measurement applications.

BRIDGING THE THZ GAP JUST GOT SMALLER.

VDI's VNA Extenders provide high performance frequency extension of vector network analyzers from 50GHz to 1.5THz. These modules combine high test port power with exceptional dynamic range and unmatched stability.

VDI's mini-modules are reduced in size, but yield the same industry leading performance as our original designs. The compact form factor and simplified power supply make them the recommended solution for most applications.

Mini-modules are currently available in standard waveguide bands for 26GHz to 500GHz with higher frequency bands under development.

)														
Waveguide Band (GHz)	WR28 26-40	WR15 50-75	WR12 60-90	WR10 75-110	WR8 90-140	WR6.5 110-170	WR5.1 140-220	WR4.3 170-260	WR3.4 220-330	WR2.8 260-400	WR2.2 325-500	WR1.5 500-750	WR1.0 750-1,100	
Dynamic Range (BW=10Hz, dB, typ) (BW=10Hz, dB, min)	120 110	120 110	120 110	120 110	120 110	120 110	120 110	115 110	115 105	100 80	110 100	100 80	65 45	
Magnitude Stability (±dB)	0.15	0.15	0.15	0.15	0.15	0.25	0.25	0.3	0.3	0.5	0.5	0.4	0.5	
Phase Stability (±deg)	2	2	2	2	2	4	4	4	6	6	6	4	6	
Test Port Power (dBm)	13	13	13	11	6	9	-1	-2	-6	-10	-8	-25	-30	

Virginia Diodes, Inc.

979 2nd St. SE, Suite 309 Charlottesville, VA 22902 434.297.3257

vadiodes.com

Achieve Metrology-grade Results At Millimeter-wave Frequencies

It's easy to underestimate the challenges that arise when working at millimeter-wave frequencies. Keysight is focused on delivering easier access to accurate, repeatable measurements at ever-higher frequencies and wider bandwidths.

N5291A 900 Hz to 120 GHz Network Analyzer solution

For more information, visit: www.keysight.com/find/millimeter-wave

With highest precision. Hidden truths brought to light. The new R&S®ZNA vector network analyzer.

The R&S[®]ZNA vector network analyzer features outstanding RF performance, a broad range of software functions and a unique hardware concept. With its innovative dual-touchscreen and DUT-oriented operating concept, the R&S[®]ZNA is a powerful, universal test platform for characterizing active and passive DUTs.

www.rohde-schwarz.com/product/ZNA

Work together for customized solutions or explore our high performance terahertz modules.

We supply high quality millimeter wave products, including frequency multipliers, mixers, amplifiers, phase-locked oscillators, and frequency extenders.

Wasa Millimeter Wave's expertise spans from device design to terahertz subsystems.

We deliver innovative solutions for your terahertz application

Wasa Millimeter Wave AB Göteborg, Sweden info@wmmw.se www.wmmw.se

Committees

The Local Organizing Committee (LOC) was responsible for the planning and organizing activities. LOC also decided on accepting of the 6 late contributions in the Poster Session. The LOC consists of the following persons affiliated with the Chalmers University of Technology, Gothenburg, Sweden:

Belitsky Victor (Chair) Desmaris Vincent Pavolotsky Alexey Sjögren Paulina Stake Jan

The LOC can be reached at isstt2019info@gmail.com

The Scientific Advisory Committee (SAC) members were responsible for reviewing the abstracts and making recommendations on acceptance and format of presentation for each abstract. This Committee will also decide on the place and dates for the next ISSTT2020, proceedings publication policy and the Best PhD Student Contribution Award committee.

The SAC members are:

Andrey Baryshev	University of Groningen, the Netherlands
Victor Belitsky	Chalmers University of Technology, Sweden
Brian Ellison	Rutherford Appleton Laboratory, UK
Jian-Rong Gao	SRON, the Netherlands
Gregory Goltsman	MSPU, Russia
Christopher Groppi	Arizona State University, USA
Jeffrey Hessler	Virginia Diodes Inc., USA
Heinz-Wilhelm Hübers	DLR, Germany
Boris Karasik	Jet Propulsion Laboratory, USA
Valery Koshelets	IRE RAS, Russia
Alain Maestrini	Paris Observatory, France
Hiroshi Matsuo	NAOJ, Japan
Imran Mehdi	Jet Propulsion Laboratory, USA
Patricio Mena	University of Chile, Chile
Netty Honingh	University of Cologne, Germany
Christophe Risacher	IRAM, France
Sheng-Cai Shi	Purple Mountain Observatory, China
Jan Stake	Chalmers University of Technology, Sweden
Edaward Tong	Smithsonian Astrophysics Observatory, USA
Yoshinory Uzawa	NAOJ, Japan
Ghassan Yassin	University of Oxford, UK

2019 30th Insternational Symposium on Space Terahertz Technology (ISSTT 2019)

April 15 – 17, 2019, Gothenburg, Sweden

Technical Program¹

¹In the Technical Program, it is only the submitting author names along with the titles of the contributions, which are listed. The full lists of authors could be found in the corresponding paper.

Monday, April 15, 2019

08:45 – 09:00 Welcome

09:00 – 10:20 Session I. Instruments, Devices and Technologies for Small Satellites *Chair: Vincent Desmaris*

- 09:00–09:20 Goutam Chattopadhyay Planetary/Cometary Submillimeter-Wave Instruments on Ultra-Small Platforms. Page 19
- 09:20–09:40 Maria Alonso del Pino Fly's Eye Lens Phased Array for Submillimeter-Wave Space Instruments. Page 20
- 09:40–10:00 Jonathan Hoh Development of an Integrated Dual-Band Schottky Receiver in the Terahertz Regime for Use in Cubesat Systems. Page 21
- 10:00–10:20 Christine P. Chen Design and Fabrication of Silicon Stacked Architecture for 2.06 THz Receiver Front End. Page 22

$10{:}50$ - $11{:}30$ Invited talk I

Donal Murtagh, *Chalmers University of Technology* - Mm and sub-mm spectroscopy in atmospheric science.

11:30 - 12:30 Session II. Schottky Receivers and Technologies Chair: Jan Stake

- 11:30–11:50 Diego Moro-Melgar Reliability and Reproducibility of Discrete Schottky Diodes-Based Sources up to 370 GHz. Page 26
- 11:50–12:10 Jeanne Treuttel Development of Room-Temperature Schottky Diode Technology for applications in the Tera-Hertz ranges. Page 27
- 12:10–12:30 Karl Jacob Radiometric Performance of the 530 to 625 GHz Receiver Unit of the Submillimetre Wave Instrument on JUICEs. Page 28

13:50 - 14:30 Invited talk II

Karl-Friedrich Schuster, *Institut de Radioastronomie Millimétrique* - General Development Strategies for Millimeter-wave Astronomy and historic and current approaches at IRAM.

14:30 - 15:30 Session III. SIS Receivers and Mixers Chair: Christopher Groppi

- 14:30–14:50 Raymond Blundell A 1.3 mm Superconductor Insulator Superconductor Mixer Receiver with 40 GHz Wide Instantaneous Bandwidth. Page 33
- 14:50–15:10 Takafumi Kojima Performance of a 275-500 GHz SIS mixer with 3-22 GHz IF. Page 34
- 15:10–15:30 Wenlei Shan Experimental Study of a Monolithic Planar-integrated Dual Polarization Balanced SIS Mixer. Page 35

16:00 - 17:00 Session IV. THz sources Chair: Imran Mehdi

- 16:00–16:20 Bertrand Thomas Digitally tunable 150 GHz Local Oscillator chian for the Submillimeter Wave Instrument onboard the ESA JUICE mission. Page 37
- 16:20–16:40 Jose V. Siles High-power broad-band room-temperature 2.46-2.70 THz LO sources to enable high-spectral resolution mapping of HD and [NII]. Page 38
- 16:40–17:00 Nickolay Kinev Superconducting flux-flow oscillator as the terahertz external local oscillator for heterodyne receiving. Page 39

17:00 - 19:30 Poster Session

MM and Microwave Passive and Active Components

P1-1	Cristian López - Design and implementation of a broadband and compact 90-degree waveguide twist with simplified layout. Page 41
P1-2	Daniel Montofre - Study and Development of two Low-Cost and Easy-Construction Horn Antennas for Astronomy Applications. Page 44
P1-3	Jie Hu - Design of a Silicon-based $160-320\rm{GHz}$ tanh-profile wide-band Corrugated Horn. Page 46
P1-4	Cristian Lopez - Broadband Waveguide-to-Substrate Transition Us- ing a Unilateral Etched Finline Structure. Page 47
P1-5	Hawal Rashid - Compact Wideband Passive and Active Component Chips for Radio Astronomy Instrumentation. Page 50
P1-6	Isaac Lopez-Fernandez - Compact Cryogenic Wide-Band Balanced Amplifiers with Superconducting 90° Hybrids for the IF of Submillimeter-Wave SIS Mixer. Page 57
P1-7	Patricio Mena - Modelling dielectric losses in microstrip traveling- wave kinetic-inductance parametric amplifiers. Page 63
P1-8	Vincent Desmaris - Characterization of GaN-based Low Noise Amplifiers at Cryogenic Temperatures. Page 67

- P1-9 Marko Neric Design and Prototyping of Novel Cryogenic Flexible Stripline Transmission Lines as an Alternative to Semi-Rigid Coaxial Cables. Page 69
- P1-10 Penghui Zheng A Robust 24-29 GHz Low Noise Amplifier with 1dB Noise Figure and 23 dBm P1dB. Page 72
- P1-11 Masui Sho Design of a Radio Frequency Waveguide Diplexer for Dual-band Simultaneous Observation at 210-375 GHz. Page 73

SIS Mixers and Receivers

- P2-1 Tobias Vos Advanced tuning algorithms for increasing performance of high-frequency SIS mixers. Page 76
- P2-2 Urs Graf CHAI, the CCAT-prime Heterodyne Array Instrument. Page 77
- P2-3 Kirill Rudakov 240 GHz DSB receiver performance. Page 78
- P2-4 Sina Widdig Design and Fabrication of an on-Chip Sideband Separating (2SB) Balanced SIS Mixer for 400 500 GHz on a $9\,\mu\text{m}$ Silicon Membrane. Page 80
- P2-5 Andrey Khudchenko First Results of the Sideband Separating Mixer for 850 GHz. Page 81
- P2-6 Christophe Risacher Instrumentation development for the 2020 decade at the NOEMA and 30m telescopes. Page 83
- P2-7 Doug Henke Configuring the ALMA Band 3 Cartridge into a Balanced 2SB Receiver. Page 84

SIS technology and other processing

- P3-1 Matthias Kroug Barrier Reduction and Sub-gap Leakage in Niobium Based SIS Junctions. Page 86
- P3-2 Leonid Kuzmin Array of Multichroic Double-Slot Antennas with Cold-Electron Bolometers for the 220/240 GHz channels of the LSPE Instrument. Page 87
- P3-3 Alexey Pavolotsky Specific capacitance of Nb/Al-AlN/Nb superconducting tunnel junctions. Page 92
- P3-4 Alexander Lubenchenko Native oxide on ultra-thin NbN films. Page 95
- P3-5 Kah Wuy Chin Design of On-chip Broadband Band Selection Filter for Multi-chroic mm/submm Camera. Page 99
- P3-6 Jing Li NbN/AlN/NbN Superconducting Tunnel Junctions Fabricated for HSTDM. Page 100

HEB Mixers

P4-1	Narendra Acharya - ${\rm MgB}_2$ HEB Terahertz Mixers: Diffusion- or phonon- cooled? Page 101
P4-2	Andrey Trifonov - An ultrathin normal metal bolometer as a promis- ing terahertz mixer. Page 102

P4-3	Johanna Böhm - Development of a HEB mixer for the observation of molecular hydrogen on SOFIA. Page 104
P4-4	Sergey Cherednichenko - MgB ₂ HEB Mixers with Nanopatterned

- Surfaces: Effect on the Noise Temperature and the LO Power. Page 105
- P4-5 Wei Miao Development of a Ti hot electron bolometer based on Johnson noise thermometry. Page 106
- P4-6 Yoshihisa Irimajiri Measurements of Receiver Noise Temperature of a Ni-NbN HEBM at 2-THz band. Page 107

THz Optics and Devices

P5-1	Yuner Gan - Bandwidth of a 4.7 THz asymmetric Fourier grating. Page 109
P5-2	Eduard Driessen - A planar silicon metamaterial lens with integrated anti-reflection coating for frequencies around 150 GHz. Page 113 $$
P5-3	Behnam Mirzaei - Asymmetric phase grating as 4.7 THz beam multiplexer for GUSTO. Page 114
P5-4	Shinsuke Uno - Development of mm/submm Frequency Selective Filters made with FPC Fabrication Technology. Page 117
P5-5	Tai Oshima - Development of mm/submm broadband anti-reflection coating exploiting the various expanded PTFEs measured with THz-TDS. Page 118
P5-6	Cassandra Whitton - Design of a Narrow-band 600GHz Metamaterial Flat Focusing Element. Page 119
P5-7	Sofia Rahiminejad - Low-loss Silicon MEMS Phase Shifter at 550 GHz. Page 122
P5-8	Haotian Zhu - Multilayer dielectric diagonal horn for reshaping THz QCL beam pattern. Page 123
P5-9	Cecile Jung-Kubiak - Broadband Antireflective Silicon Optics for Terahertz instruments. Page 124
P5-10	Irmantas Kasalynas - Optical performance of laser-patterned high-resistivity silicon wafer in the frequency range of $0.1 - 4.7$ THz. Page 125

THz Sources

P6-1	Valery Koshelets - Spectral measurements of THz radiation from intrinsic BSCCO stacks; Phase locking of the DSCCO oscillators. Page 128
P6-2	Peter Sobis - 4.7 THz GaAs Schottky Diode Receiver Components. Page 133
P6-3	Josip Vukusic - Reliability assessment of GaAs and InP THz mixers and frequency multipliers fabricated on 3" wafers. Page 134
P6-4	Leonid Revin - YBaCuO Josephson generators as THz sources for

	bolometer characterization. Page 135
P6-5	Sajjad Mahdizadeh - A $4.7~\mathrm{THz}$ QCL phase locking experiment. Page 136
P6-6	Fei Yang - A 900GHz Broadband Balanced Frequency Quadrupler. Page 137
P6-7	Peng Chen - A 410-510GHz Local Oscillation Source for SIS Mixers. Page 138
Systems	
P7-1	Axel Murk - Characterization of Digital Real-Time Spectrometers for Radio Astronomy and Atmospheric Remote Sensing. Page 139
P7-2	Grigoriy Bubnov - Astroclimate investigations review for coming radio astronomy projects. Page 143
P7-3	Sylvain Mahieu - Atmospheric Phase Monitoring Interferometer for the NOEMA Observatory. Page 149
P7-4	Igor Lapkin - New Optics for SEPIA – Heterodyne Facility Instrument for APEX Telescope. Page 150
Antennas ar	nd Telescopes
P8-1	Hayato Takakura - Far-sidelobe Measurements of LiteBIRD Low Frequency Telescope Scaled Model. Page 155
P8-2	Xiaodong Ren - Holographic Measurement System for the CCAT- prime Telescope – System Design and Novel Software Approach. Page 157

Tuesday, April 16, 2019

08:45 - 10:05 Session V. SIS Devices and Receivers Chair: Christophe Risacher

- 08:45–09:05 Edward Tong Noise Analysis of SIS Receivers Using Chain Noise Correlation Matrices. Page 163
- 09:05–09:25 Denis Meledin A 1mm SIS Receiver Utilizing Different IF Configurations. Page 164
- 09:25–09:45 Boon Kok Tan Noise Characterisation of a Flux-Pumped Lumped-Element Josephson Parametric Amplifier using an SIS Mixer. Page 168
- 09:45–10:05 John Garrett Multi-tone Spectral Domain Analysis of a 230 GHz SIS Device. Page 169

P8-3 Yuan Qian - Characteristics Investigation on Thermal Deformation of Large Size Terahertz Reflector Antenna in Space. Page 158

13:50 - 14:30 Invited talk III

Leonardo Testi, European Organisation for Astronomical Research in the Southern Hemisphere - The ALMA 2030 Development Roadmap: science goals and instrument development vision.

11:30 - 12:30 Session VI. Future Missions and Projects - I Chair: Patricio Mena

- 11:15–11:35 Paul Goldsmith A Space Mission to Probe the Trail of Water. Page 172
- 11:35–11:55 Christopher Groppi First Generation Heterodyne Instrumentation Concepts for the Atacama Large Aperture Submm/mm Telescope. Page 173
- 11:55–12:15 Andrei Smirnov Millimetron Space Observatory: progress in the development of payload module. Page 180

13:30 - 14:10 Invited talk IV

Paola Caselli, *Max-Planck-Institute for Extraterrestrial Physics* - Astrochemistry at the dawn of star and planet formation.

14:10 - 15:10 Session VII. THz Optics and Antennas Chair: Hiroshi Matsuo

- 14:10–14:30 Richard Hills Wide-Field Designs for Off-Axis Telescopes: Application to the Optics of CCAT-prime. Page 183
- 14:30–14:50 Andrey Baryshev In Flight Measurements System of Millimetron Primary Mirror Surface. Page 184
- 14:50–15:10 Jose Silva Far-field beam pattern technique for high pointing accuracy characterization of GUSTO HEB mixer arrays. Page 185

15:40 - 17:20 Session VIII. HEBs and KIDs Chair: Gregory Goltsman

- $15:40-16:00 {\rm Yuan Ren Mid-infrared heterodyne receiver based on a super$ conducting hot electron bolometer and a quantum cascade laser. Page 187
- 16:00–16:20 Akira Kawakami 2 THz Hot Electron Bolometer Mixer using a Magnetic Thin Film. Page 188
- 16:20–16:40 Changyun Yoo Demonstration of a TACIT Heterodyne Detector at 2.5 THz. Page 191
- 16:40–17:00 Tess Skyrme Understanding dissipative behaviour in superconducting microresonators over a wide range of readout power. Page 192

17:00–17:20 Eduard Driessen - Increased multiplexing of kinetic-inductance detector arrays by post- characterization adaptation of the individual detectors. Page 193

17:40 - 18:20 Session IX. Future Missions and Projects - II Chair: Valery Koshelets

- 17:40–18:00 Hiroshi Matsuo Prospects of High Angular Resolution Terahertz Astronomy from Antarctica. Page 195
- 18:00–18:20 Viacheslav Vdovin New stage of the Suffa Submm Observatory in Uzbekistan Project. Page 196

Wednesday, April 17, 2019

08:45 - 10:05 Session X. Future Missions and Projects - III Chair: Edward Tong

- 08:45–09:05 Jose V. Siles COMETS Comets Observation & Mapping Enhanced THz Spectrometer at 210-580 GHz: Objectives and Development Status. Page 203
- 09:05–09:25 Martina Wiedner The Origins Space Telescope and the Heterodyne Receiver HERO. Page 204
- 09:25–09:45 Christopher Groppi The Terahertz Intensity Mapper (TIM): a Next-Generation Experiment for Galaxy Evolution Studies. Page 208
- 09:45–10:05 Satoshi Ochiai Study for proposal of SMILES-2 to JAXA M-class mission. Page 216

10:35 - 11:15~ Invited talk V

Susanne Aalto, *Chalmers University of Technology* - Molecules as probes of galaxy evolution - exploring the hidden growth of galaxies.

11:15 - 12:35 Session XI. QCL THz Sources Chair: Heinz-Wilhelm Hübers

- 11:15–11:35 Marc Mertens A Double-Metal QCL with Backshort Tuner. Page 221
- 11:35–11:55 Martin Wienold Frequency tuning of terahertz quantum-cascade lasers by optical excitation. Page 222
- 11:55–12:15 Till Hagelschuer A compact 4.7-THz source based on a high-power quantum-cascade laser with a back-facet mirror. Page 223
- 12:15–12:35 Yuner Gan 81-beam supra-THz local oscillator by a phase grating and a quantum cascade. Page 224

13:45 - 15:25 Session XII. Radars, Systems, Backend Chair: Sheng-Cai Shi

- 13:45–14:05 Bernd Klein Digital high-resolution wide-band Fast Fourier Transform Spectrometer. Page 226
- 14:05–14:25 Ken Cooper Validation Measurements of Humidity Profiling in Rain Using a 170 GHz Differential Absorption Radar. Page 227
- 14:25–14:45 Theodore Reck Cold-Source Noise Temperature Measurements with a Vector Network Analyzer Frequency Extender at WR-6.5. Page 228
- 14:45–15:05 Gabriel Santamaria Botello On the Comparison Between Low Noise Amplifiers and Photonic Upconverters for Millimeter and Terahertz Radiometry. Page 229
- 15:05–15:25 David Monasterio A broadband down-conversion module for the extended W-Band. Page 233

16:05 - 17:25 Session IV. New Devices and Technologies Chair: Jian-Rong Gao

- 16:05–16:25 Sergey Cherednichenko Quantum transport at Dirac point enables graphene for terahertz heterodyne astronomy. Page 236
- 16:25–16:45 Hajime Ezawa Design and Evaluation of SIS Photon Detectors at Terahertz Frequencies. Page 237
- 16:45–17:05 Wen Zhang Near infrared photon detectors using titanium-based superconducting transition-edge sensors. Page 238
- 17:05–17:25 Andrey Pankratov On-chip refrigerator integrated into a photonnoise-limited detector for high-performance Cosmology missions. Page 239