Why is Massive Star Formation so Unconstrained?

Crystal Brogan (NRAO/NAASC)

Collaborators:

Todd Hunter (NRAO), Remy Indebetouw (UVa/NRAO), <u>Claudia Cyganowski (U. of Wisconsin), E</u>d Churchwell (U. of Wisconsin), Ken (Taco) Young (CfA), Karl Menten (MPIfR), Henrik Beuther (MPIfA)

The Birth and Feedback of Massive Stars, Sept. 27, 2008

Outline: Why is Massive Star Formation so Unconstrained?

- Incredible clustered complexity
- ❖ Where's the disk? ⇒ superposition of line excitation, chemistry, complex kinematics, and optical depth
- Dynamical timescales are a tricky business
- ✤ Need larger sample...
- Looking toward the future

Orion: An Evolving Massive Cluster

*By no means an Massive Protocluster Properties exhaustive list...

Source Reference	Distance	Luminosity		Multiplicity	≈∆Vcores	MM/Submm
	(kpc)	(L _☉)	(≥)	(km/s)		
G29.96-0.02	6.0	106	6	4.0	(Beuthe	r et al. 2008)
NGC 6334 I	1.7	10 ^{5.4}	4	4.0	(Hunter et al. 2006)	
W3 IRS5	2.0	10 ^{5.3}	4	5.0	(Rodin et al. 2008)	
W33a	4.0	10 ⁵	3	only 1 with lines	(Brogan et al. in prep)	
S255N	2.6	10 ⁵	4	3.0	(Cyganov	wski et al. 2007)
Cepheus A-East	0.7	10 ^{4.3}	6	4.5	(Brogan et al. 2006)	
G24.60+0.08	6.5	104	5	?	(Rathbo	rne et al. 2007)
IRAS 05358+3543	1.8	10 ^{3.8}	4	?	(Beuthe	r et al. 2008)
AFGL 5142	1.8	10 ^{3.4}	5	2.5	(Zhang e	et al. 2007)
NGC 6334 I(N)	-1.7		-6-	2.5	Brogan	et al. in prep) —
If you use $\Delta v = 4$ km/s, and a separation of 4000 AU and derive "Keplerian" centripetal mass $\Rightarrow 35$ M _{\odot} Sound familiar?						

- Typical crossing time ~ 10^4 years \leq Typical outflow timescales ~ 10^5 years
- Does this velocity dispersion prevent monolithic collapse?

"Hot Cores" around Massive Protostars

- Dust grain ice mantles melt
- High temperature combined with newly liberated atoms and molecules drive copious organic chemistry
- Can only be observed at small spatial scales (beam dilution)

Van Dishoeck & Blake (1998)

- Remarkable chemical variation between SMA1 and SMA2, only 4000 AU apart
- Why is SMA 4 line-free? Is it in a pre-hot core stage?

HNCO

dominated by radiative processes not collisions K=0 (*E*_L=33 cm⁻¹)

2

0

Various organic species

Note widely different distributions and kinematics $IF we assume Keplerian rotation and the full velocity width of the line emission for SMA1, the enclosed mass is ~50 M_{\odot}$

 $K=2 (E_{L}=153 \text{ cm}^{-1}) K=3 (E_{L}=304 \text{ cm}^{-1})$

there's no telling whats up with SMA2...

K=1 ($E_{\rm L}$ =63 cm⁻¹)

Dust emission from NGC 6334 I (Beam 0.8" × 0.4")

• It is crucial to observe with high spectral resolution to remove the lines!

The Brightness Temperature measured at High Resolution is a powerful probe of Luminosity

SMA 1

Beam 0.5"x 0.3" (850 x 510 AU)

 $T_{h}(K) = 1.224 \times 10^{6} * S_{y}(Jy)$ v^2 (GHz) * $[\theta_{beam} (``)]^2$ $L_{\rm b} \ge 4\pi R_{\rm beam}^2 \sigma T_{\rm b}^4$ $L_{b,fit} \ge 4\pi R_{fit}^2 \sigma T_{b,fit}^4$ $T_{b}(K) T_{b,fit}(K) R_{fit}(AU) L_{b,fit}(L_{\odot})$ 72 78 930 > 4100 SMA 2 44 77 500 > 1200 SMA 4 23 320 > 620

With its higher resolution and range of frequencies, ALMA will enable assumption free luminosity measurements of protocluster members

But for SMA1 and SMA2 brightest lines have $T_b \sim 125 \text{ K}$

83

⇒ Luminosities at least 7x larger than lower limits

For T_{dust} =125 K, τ_{dust} ~ 1 at 340 GHz

So What's up with the Crazy Morphology?

(no) +

~340 GHz data:

<u>No</u> lines peak on SMA1 or SMA2 continuum peak ⇒ continuum opacity is simply too high

ALMA simulation of m=1 spiral: of disk at 0.5 kpc in CH_3CN (K=0) 220.747 GHz, $T_{upper} = 69$ K

000

(arcsec)

0.00

000 - 500

Could something like this work? We need very high resolution at a frequency where the emission is optically thin in BOTH continuum and lines

(Krumholtz, Klein, & McKee 2007)

How to Get the Most Bang for your Buck

- T > 100 K innermost regions \Rightarrow use high temp. lines to avoid envelope contamination
- Inner disk column density ~ $10^3 g \text{ cm}^{-2} \Rightarrow \text{dust optical depth} ~ 1 \text{ at}$ 100 GHz (3mm)
 - Outer parts of disk continuum very easy to image with ALMA
 - Outer parts of disks have strong lines, very easy to image kinematics with ALMA (but only if unblended)
 - 25x greater sensitivity than SMA shown here
 - Kinematics and continuum morphology in the central few hundred AU challenging with ALMA due to high dust optical depth

 \Rightarrow Data longer than 3 mm will be essential

 \Rightarrow ALMA at 3 mm and EVLA 10 mm

A Sort of Sequence with Many Caveats

Increasing cm-wavelength emission **Encreasing far-IR luminosi**t

IRAS

Very Dense Cold Cores: Infrared Dark Clouds +? High Mass Protostellar Objects (HMPO) Massive Young Stellar Object (MYSO) +? Hot Cores Hypercompact HII region Ultracompact HII region Large Diffuse Evolved HII region

Molecular outflows Flattened disk-like structure:

Masers

⇒ Perhaps similarly colored "Extended Green Objects" (EGOs) would act as signposts for a new sample of massive young stellar objects

A Catalog of >100 EGOs from GLIMPSE

(Cyganowski et al. 2008)

- Mean offset from IRAS point source > 1'
- Many coincident with IRDCs
- Many coincident with MIPSGAL 24 μm emission
- Mid-IR colors consistent with young YSOs

⇒ Comprises a new pool of massive young stellar object candidates

But how to efficiently confirm that the candidates are massive and 4.5 μm emission is due to outflow?

Methanol (CH_3OH) masers:

- 6.7 GHz (class II): Ubiquitous toward massive star forming regions, but not low mass (Minier et al. 2003; Ellingsen 2006; and many others)
- > 44 GHz (class I): Massive outflows (Kurtz et al. 2004)

This search makes use of new capabilities of the EVLA ⇒ extended wavelength coverage!

⇒ Extended 4.5 μm
emission is a signpost of MYSOs, with active
outflows, likely powered
by ongoing accretion

Next Step:

 MM follow-up to determine properties of protostars

Cyganowski et al. in prep. (see poster)

Results from (E)VLA Maser Survey of EGOs

G35.03+0.35 d~3 kpc

Maser Detection Rates:

- ▲ 6.7 GHz Class II: 64% (18/28)
- 44 GHz Class I: 89% (17/19)

IRAS 18110-1854 G11.92-0.61 d~4.5 kpc

Summary and Conclusions

- Massive stars form in protoclusters
 - Many massive star forming regions have the appearance of proto-trapezium
 - A multitude of dust cores some with "hot core" emission indicating a star has ignited - others that are "lineless"
- The copious line emission from MYSOs is a powerful probe of the physical conditions
 - Making sense of kinematics is very tricky: must account for line excitation, line and continuum optical depth
 - Massive accretion does not happen through "Keplerian frisbees"
 - Watch out for fossil flows ⇒ dynamical timescales
- IRAS is a blunt tool in the inner Galaxy; need better sample
 - Spitzer/GLIMPSE EGOs have produced a new promising sample

ALMA will improve resolution and spectral sensitivity by more than 25x EVLA will be essential to probe optically thick inner disk regions

• Extra slides

External heating? No!

25° intercept angle \leq 1.2% of a sphere (centered on the UCHII region exciting star) 50,000L_{\odot} * 0.012 = 600 L_{\odot}

Core radius ~ 1" ~ 1700 AU L = $4\pi R^2 \sigma T^4 < 600 L_{\odot}$ T < 15 K

At our current resolution, NGC6334I could harbor kinematically distinct multiple protostars within each core which can easily mimic a disk (see for example Brogan et al. 2006 for CepA-East)

Using LVG analysis of multiple single dish (18" resolution) high J CO lines observed with APEX, Leurini et al. (2006) find: $M_{outflow} > 3 M_{\odot}$ and $L_{mech} > 1500 L_{\odot}$ assuming an inclination of 45°

