Feedback from Massive stars: Global Manifestations & Cosmological Implications



Goal: Discuss the potential impact of starburst-driven winds on the evolution of galaxies & the IGM



#### OUTLINE

MOTIVATION
 BASIC WIND PHYSICS
 WIND PHASES
 OUTFLOW RATES
 DO WINDS ESCAPE?
 CLUES FROM ALMA

# I) MOTIVATION



#### Feedback and galaxy evolution

#### Benson et al. (2003)



- Unlike dark matter, galaxies have a characteristic baryonic mass scale: Why?
- Feedback needed to cure "overcooling" in both low- and high-mass dark matter halos

#### Feedback & Galaxy Evolution



 The mass-metallicity relation for galaxies implies the selective loss of metals from the shallower potential wells (Tremonti et al.)

# Feedback & the IGM



 The mass of metals in the intracluster medium is several times that in galaxies Some global considerations: are massive stars enough?

- Supernovae (plus stellar winds) supply 10^49 ergs in kinetic energy per solar mass of stars formed
- This is ~10^60 ergs in KE per L\* galaxy (ignoring radiative cooling)
- The corresponding specific kinetic energy v ~ 1000 km/s
- This exceeds the escape velocity for all but the most massive galaxies

# The key questions

Massive stars can do the job in principle We see starburst-driven galactic winds BUT

- What are the transport rates in these winds?
  Mass outflow rate/SFR
  Energy outflow rate/energy injection rate
  Metals-out/metals-retained
- Do these outflows escape the galaxy and make it to the IGM (fountain vs. wind)?
- Upon what physical parameters do the answers to these questions depend?

# II) BASIC WIND PHYSICS



# **ENERGETICS/DYNAMICS**

- Kinetic energy from massive stars
- IF radiative losses are not too large: the collective effect is a bubble of very hot over-pressured gas
- Expansion preferentially along minor axis
- "Blow Out" into galactic halo
- Weakly collimated bipolar wind

#### **BLOW OUT INTO THE HALO**



- Most of the volume is occupied by the very hot and tenuous wind fluid
- Most of the emission comes from dense material interacting with the wind fluid

## WIND-CLOUD COLLISION



- Soft X-rays from wind/cloud interface
- Cloud is accelerated by wind
- A. Marcolini et al.

# III) WIND PHASES



M82 w/ Spitzer mid-IR & Chandra & HST

### The Very Hot Phase: the wind fluid



- Very hot (T ~ 60 million K): implies v\_term ~ 2000 km/s
- Tenuous (~0.1 cm^-3)
- Detected only in M82 central region (adiabatic expansion & cooling causes it to disappear outside this region)

# THE SOFT X-RAY PHASE



Soft X-rays trace gas at T  $\sim$  3 to 10 Million K Corresponding velocity  $\sim$ 500 to 800 km/s At the interface between the wind and clouds

#### ABUNDANCES IN THIS HOT GAS



- Alpha/Fe several times solar
- Consistent with wind driven by core-collapse supernovae

#### THE WARM PHASE



- Optical emission from clouds accelerated by wind
- Velocity ~one to few hundred km/s
- NGC 1569 (Martin et al.)

# THE WARM PHASE(S)



- Blue-shifted absorption-lines: entrained clouds
- Traces a range from neutral to coronal phases
- Typical velocities one-to-few hundred km/s

# THE RELATIVISTIC PHASE



- Radio synchrotron emission from advected cosmic ray electrons and magnetic field
- NGC 4631 (Wang; Dahlem)

# THE DUSTY PHASE



- The entrained gas is dusty: radiation pressure?
- M82 with GALEX (Hoopes et al.)

# THE MOLECULAR PHASE



- Few hundred million solar masses at ~ 100 km/s
- KE ~ 3 x10^55 ergs
- Fabian et al.

# IV) OUTFLOW RATES



# OUTFLOW RATES The Very Hot Wind Fluid



Luminosity and temperature require of-order unit efficiency (~all the kinetic energy from massive stars goes into heating this gas)

#### OUTFLOW RATES X-Rays

- The X-ray luminosity, temperature, and size yield M  $F^{-1/2}$ , P  $F^{1/2}$ , and TE  $F^{-1/2}$ , where "F" is the volume filling factor
- The X-ray size and temperature lead to a "crossing-time" and hence  $\dot{M}$  and  $\dot{E}$
- For  $F \sim 1$ ,  $\dot{E} \sim \dot{E}_{sne}$  and  $\dot{M}$  = several times the SFR ( $\Lambda$  of-order 10)
- Note:  $\mathbf{P} \Delta \mathbf{V} \propto \mathbf{F}^{-1/2}$

**OUTFLOW RATES** 

**Optical Emission Lines** 

- Measure mass directly (measure  $n_e$ ) and can also directly measure outflow velocities
- Measure the wind ram pressure:  $P(r) = \dot{M} v/r^2 \Omega_W$  $\dot{M} v = P(r) r^2 \Omega_W$
- Implied outflow rates in the hot wind fluid:  $\dot{M} = 20 (v/10^3)^{-1} (\Omega/4\pi) (L_{bol}/10^{11}) M_{\odot}/\text{yr}$  $\dot{E} = 10^{43} (v/10^3) (\Omega/4\pi) (L_{bol}/10^{11}) \text{ erg/s}$
- $\dot{M}$  is several times the SFR and  $\dot{E} \sim \dot{E}_{sne}$

OUTFLOW RATES Interstellar Absorption Lines

- $\bullet$  Gas columns are a few  $\times$   $10^{21}~cm^{-2}$  and outflow speeds are a few hundred km/s
- Outflow rate: 10  $(r_*/kpc) (N_H/10^{21}) (\Delta v/100) (\Omega_W/4\pi) M_{\odot}/yr$
- Typical values:  $\dot{M}$  = a few times the SFR  $\dot{E} \sim 10\% \dot{E}_{sne}$

## OUTFLOW RATES: Molecular Gas

- M82: M\_mol ~ 3 x 10^8 solar masses
- Radius 1.2 kpc
- V ~ 100 km/s
- t\_out ~ 12 Myr
- Outflow rate ~ 25 M\_sun/year
- This is ~ 3 to 5 times the SFR

# **OUTFLOW RATES**

#### Summary

- Although the methods above all require uncertain assumptions, they are independent of one another
- Conclusion: the outflows require of-order unit-efficiency for the conversion of supernova KE and carry out mass at a rate of-order the SFR

# V) DO WINDS ESCAPE?



# THE FATE OF WINDS

Are they "quenched" by radiative cooling?

- $L_X \sim 10^{-2} \dot{E}_{sne}$ Radiative cooling by hot gas insignificant
- FUSE observations of OVI: Radiative losses from coronal phase insignificant



- Hoopes et al.
- M82 et al.

#### THE VERY HOT WIND FLUID



- The wind fluid itself is very hot (~60 Million K)
- The corresponding velocity is ~ 2000 km/s
- Way above escape velocity from any galaxy
- But what about the stuff carried out by this wind?

## THE SOFT X-RAY GAS



- Soft X-ray temperature invariant w/ galaxy mass
- Preferential escape from low mass galaxies?



- C. Martin (see also Rupke et al.)
- Outflow speeds of-order the escape velocity

## **Dependence on SFR**



- Winds in dwarf galaxies have insufficient thrust
- C. Martin (see also Rupke et al.)

#### The Bottom Line



- "Escapability" is different for different phases !
- The hot phase carries most of the energy & new metals
- Beware of inferences based on a single "view"

#### Lessons for High-Redshift



- Winds are unbiquitous in Lyman Break Galaxies (e.g. Shapley et al.)
- All we know about them is via the cool/warm phase
- Lesson from local starbursts: there's more going on!

# VI) THE ROLE OF ALMA



- Exploring the cold wind phase
- What sets the efficiency (KE\_wind/KE\_SNe)?

#### Molecular gas & dust in the wind



- The detection & characterization of molecular gas and dust has only been done in a few cases
- The molecular phase may dominate the mass
- ALMA: statistically robust, complete sample

# Launch! The base of the wind



FIG. 1.—Velocity-integrated intensity map of SiO (v = 0. J = 2-1), i

- Tracers like J =6-5 CO and SiO probe the region where the wind is launched
- Seaquist et al. & Garcia-Burillo et al.

# Wind Efficiency: Empirical Clue



- Winds evident when SFR intensity > 0.1 solar mass/(year square-kpc) Strickland & TH
- ISM "topology" is different above this threshold?

#### What sets this threshold?



- ALMA: Probe the "meso-scale" sites of energy injection
- ALMA: Measure the porosity of the molecular ISM
- Most stars form in super star-clusters: impact on ISM?
- What determines the wind efficiency (the fraction of injected energy in the wind)?

#### SUMMARY

- Winds are driven whenever global SFR/area is high (the norm at high-z, only in starbursts now)
- They are complex multi-phase phenomena
- They carry a large fraction of SNe energy and newly created metals out of the starburst
- Mass outflow rate > SFR
- The hot gas escapes and cooler gas may not
- Similar winds enriched and may have significantly heated the IGM at high-z
- ALMA: understanding why/when winds are produced and probing the cold wind phase