Massive Star Formation in THINGS++

Adam Leroy Fabian Walter (THINGS PI) & Frank Bigiel (Thesis) Max Planck Institute for Astronomy, Heidelberg

Gross oversimplifications.

Gross oversimplifications.

Review: McKee & Ostriker '07 Giant Molecular Clouds

unstable gas collapses directly to form stars over a **disk free-fall time**

(i.e. a "Kennicutt-Schmidt law")

Properties of Individual GMCs

e.g., cloud free fall time/density (e.g. Krumholz & McKee '05)

balance between ISM phase set by **pressure**, limits SFR (e.g. Elmegreen & Parravano '94, Wolfire '03 Wong & Blitz '02, Blitz & Rosolowsky '04,'06)

Rate of collisions between bound Clouds (e.g. Wyse & Silk '87, Tan '00)

1. Formulate star formation recipes from the literature as predictions of **star formation efficiency** (SFE)

$$SFE = \frac{\Sigma_{SFR}}{\Sigma_{Gas}}$$

or H₂-to-HI ratio:

Star formation rate normalized by gas.

How effective is a given parcel of ISM at turning itself into stars?

Convolves timescale and true efficiency.

Measures the phase of the ISM.

In simplified equilibrium between phases: ratio of H_2 creation to destruction.

2. Measure the SFE...

mol

3. Measure the quantities that drive the predictions...

Predictions for SFE and R_{mol}

Theory	Form	Observables				
Star Formation Laws						
Disk free–fall time fixed scale height	${ m SFE} \propto \Sigma_{ m gas}^{0.5}$	$\Sigma_{\rm gas}$				
variable scale height	SFE or $R_{\rm mol} \propto \frac{\Sigma_{\rm gas}}{\sigma_{\rm g}} \left(1 + \frac{\Sigma_{*}}{\Sigma_{\rm gas}} \frac{\sigma_{\rm g}}{\sigma_{*}}\right)^{0.5}$	$\Sigma_{\mathrm{gas}}, \Sigma_*, \sigma_g, \sigma_*$				
fixed GMC efficiency	$SFE = SFE(H_2) \frac{\mathcal{R}_{mol}}{\mathcal{R}_{mol}+1}$	$\Sigma_{\rm H2}$				
orbital timescale	SFE or $R_{\rm mol} \propto \tau_{\rm orb}^{-1} = \frac{v(r_{\rm gal})}{2\pi r_{\rm gal}}$	$v(r_{ m gal})$				
cloud-cloud collisions	$SFE \propto \tau_{\rm Dyn}^{-1} Q_{\rm gas}^{-1} (1 - 0.7 \beta)$	$v(r_{ m gal})$				
Equilibrium H_2 -to-H I	$R_{\rm mol} \propto \left(\Sigma_{\rm gas} \left(\Sigma_{\rm gas} + \frac{\sigma_{\rm g}}{\sigma_*} \Sigma_* \right) P_0^{-1} \right)^{1.1}$	$\Sigma_{\rm gas}, \Sigma_*, \sigma_{\rm g}, \sigma_*$				
Star Formation Thresholds						
gravitational instability						
in the gas disk	$Q_{\rm gas} = \left(\frac{\sigma_g \ \kappa}{\pi \ G \ \Sigma_{\rm gas}}\right) < 1$	$\Sigma_{\rm gas}, \sigma_{\rm g}, v(r_{\rm gal})$				
in a two component disk	$Q_{\text{stars+gas}} = \left(\frac{2}{Q_{\text{stars}}}\frac{q}{1+q^2} + \frac{2}{Q_{\text{gas}}} R \frac{q}{1+q^2R^2}\right)^{-1} < 1$	$\Sigma_{\rm gas}, \Sigma_*, \sigma_{\rm g}, \sigma_*, v(r_{\rm gal})$				
competition with shear	$\Sigma_{\rm gas} > \frac{2.5 \ A \ \sigma_g}{\pi \ G}$	$\Sigma_{\rm gas}, \sigma_{\rm g}, v(r_{\rm gal})$				
critical column density Schaye (2004) model	$\begin{array}{l} \Sigma_{\rm gas} \gtrsim 10 \ {\rm M}_{\odot} \ {\rm pc}^{-2} \\ \Sigma_{\rm gas} > 6.1 \ {\rm M}_{\odot} \ {\rm pc}^{-2} \ f_{\rm g}^{0.3} \ Z^{-0.3} \ I^{0.23} \end{array}$	$\Sigma_{\rm gas}$ $\Sigma_{\rm gas}, \Sigma_*, Z, I$				

What we need to do this...

• Data at a wide variety of wavelengths:

• Kinematic information:

Dispersions:

- Map column into local conditions.
- Support against collapse.

	Physical Quantity	Source	Data Set	
<	Atomic Gas	VLA 21cm line maps	THINGS Walter+ '08	1 Contraction of the second se
w mm	Molecular Gas	HERACLES CO 2-1 maps	HERA Atlas Leroy+ '08	
	Obscured by Dust	Spitzer 24 µm maps	SINGS Kennicutt+ '03	
	Stars Unobscured	GALEX FUV maps	GALEX NGS Gil de Paz+ '07	
	Kinematics	VLA 21cm line cubes	THINGS rot. curves de Blok+ '08	+ 19305 + 19305 - 19307 - 0.000 (1937) - 0
	Stellar Disk	Spitzer 3.6 µm maps	SINGS Kennicutt+ '03	

EveryTHINGS we have...

<u>The HI N</u>earby <u>G</u>alaxy <u>S</u>urvey

www.mpia.de/THINGS Walter et al. (2008)

- NRAO large program ('03-'06) to map 21cm emission
- high resolution, sensitive VLA maps of 34 mostly SINGS galaxies
- Cubes and maps publicly available on the web!

F. Walter (MPIA)	
R. Kennicutt (Cambridge)

E. Brinks (Hertfordshire) M. Thornley (Bucknell) E. de Blok (Cape Town) F. Bigiel (MPIA)

The <u>HERA</u> <u>CO-Line</u> <u>Extragalactic</u> <u>Survey</u> HERACLES Leroy et al. (2008)

- ~250h using the IRAM 30m to map CO J = $2 \rightarrow 1$
- 11", wide-field (~ r_{25}), sensitive maps of 18 THINGS galaxies.
- HERA (Schuster+ '04): 9-pixel, 2-polarization receiver array.

THINGS + A. Usero HertfordshireA. Weiss(MPIfR)K. Schuster (IRAM)C. Kramer (IRAM)H. Wiesemeyer (IRAM)H. Roussel (IAP)

The Basic Plot: SFR vs. Gas

Bigiel, Leroy, Walter, et al. 2008

The Basic Plot: SFR vs. Gas

 $\log \Sigma_{\rm HI+H2} \left[M_{\odot} \ pc^{-2} \right]$

First THINGS first.

Bigiel, Leroy, Walter, et al. 2008

Bigiel, Leroy, Walter et al. 2008

Leroy, Walter et al. 2008

R_{mol} (H₂/HI) vs. Environment

R_{mol} vs. Environment

Leroy, Walter et al. 2008

R_{mol} vs. Environment

Leroy, Walter et al. 2008

SFE ($\Sigma_{SFR}/\Sigma_{gas}$) vs. Radius

Radius VS. SFE **Combined:** the

SFE ($\Sigma_{SFR}/\Sigma_{gas}$) vs. Radius

Radius VS. SFE Combined: the

SFE drivers?

forming stars

out of gas

ALMA = GMCs in Other Galaxies

- Massive environmental database will be in place when ALMA comes online.
- GMCs : regulating structures for SF
- ALMA : can resolve GMCs at extragalactic distances
- this is really hard right now! Mostly confined to the LG. (Talk by A. Bolatto)
- How do mass function, "Larson" scaling relations vary?
- How does SFE of individual GMCs depend on environment?

Local Group GMC Mass Functions (Blitz+ 07, Rosolowsky 05)

• T**HI**NGS++ :

High quality, multi- λ database to study star formation

• HERACLES:

Wide-field, sensitive CO maps of THINGS galaxies.

- SFR per H₂ strikingly constant in the disks of spirals.
- H₂-to-HI ratio a strong function of environment: P_h, τ_{ff} , τ_{orb}
- Clear radial behavior of in SFE = SFR/gas.
- GMC/star formation dependent more on microphysics than large-scale instability?
- ALMA: GMCs in other galaxies...

THINGS AJ Special Issue later this year: Walter et al. "THINGS: The HI Nearby Galaxy Survey" Leroy et al. "HERACLES: The HERA CO-Line Extragalactic Survey" Bigiel et al. "The Star Formation Law on sub-Kiloparsec Scales" Leroy et al. "The Star Formation Efficiency in Nearby Galaxies"

